Increasing requests for modified and personalized pharmaceutics and medical materials makes the implementation of additive manufacturing increased rapidly in recent years. 3D printing has been involved numerous advantages in case of reduction in waste, flexibility in the design, and minimizing the high cost of intended products for bulk production of. Several of 3D printing technologies have been developed to fabricate novel solid dosage forms, including selective laser sintering, binder deposition, stereolithography, inkjet printing, extrusion-based printing, and fused deposition modeling. The selection of 3D printing techniques depends on their compatibility with the printed drug products. This review intent to provide a perspective on the incentives and possible applications of 3D printed pharmaceuticals, besides a practical viewpoint on how 3D printing could be included across the pharmaceutical field.
The research aims to shed light on the nature of the tax gap in the income tax by the method of direct deduction and its reflection on the financial objective of the tax, and to determine the reasons for this gap in the deduction between the tax due in accordance with the laws and instructions in force and the tax actually paid. The tax gap is a real problem that cannot be ignored for what it represents loss of financial revenues due to the state.
The research problem is represented in the existence of a gap between the tax due according to direct deduction instructions and the tax actually paid according to the financial statements, and to achieve the objectives of the research and test the hypotheses, t
... Show MoreSupport Vector Machines (SVMs) are supervised learning models used to examine data sets in order to classify or predict dependent variables. SVM is typically used for classification by determining the best hyperplane between two classes. However, working with huge datasets can lead to a number of problems, including time-consuming and inefficient solutions. This research updates the SVM by employing a stochastic gradient descent method. The new approach, the extended stochastic gradient descent SVM (ESGD-SVM), was tested on two simulation datasets. The proposed method was compared with other classification approaches such as logistic regression, naive model, K Nearest Neighbors and Random Forest. The results show that the ESGD-SVM has a
... Show MoreIn this paper, the restricted least squares method is employed to estimate the parameters of the Cobb-Douglas production function and then analyze and interprete the results obtained. A practical application is performed on the state company for leather industries in Iraq for the period (1990-2010). The statistical program SPSS is used to perform the required calculations.
This study was conducted in College of Science \ Computer Science Department \ University of Baghdad to compare between automatic sorting and manual sorting, which is more efficient and accurate, as well as the use of artificial intelligence in automated sorting, which included artificial neural network, image processing, study of external characteristics, defects and impurities and physical characteristics; grading and sorting speed, and fruits weigh. the results shown value of impurities and defects. the highest value of the regression is 0.40 and the error-approximation algorithm has recorded the value 06-1 and weight fruits fruit recorded the highest value and was 138.20 g, Gradin
In light of the increasing importance of interim financial statements they provided these lists of information that enables users of accounting information to make wise investment decisions and predict the company's activities in light of changes the updated rather than wait until the end of the year and accessing information provided by the annual financial statements. In light of this research has come to the most important set of conclusions the adoption of interim financial information has been audited by the external auditor to the availability of basic qualitative characteristics in the accounting information contained in the (appropriate and timely manner, reliability and comparability) and this in turn leads to the impact on reli
... Show MoreThis research discusses application Artificial Neural Network (ANN) and Geographical InformationSystem (GIS) models on water quality of Diyala River using Water Quality Index (WQI). Fourteen water parameterswere used for estimating WQI: pH, Temperature, Dissolved Oxygen, Orthophosphate, Nitrate, Calcium, Magnesium,Total Hardness, Sodium, Sulphate, Chloride, Total Dissolved Solids, Electrical Conductivity and Total Alkalinity.These parameters were provided from the Water Resources Ministryfrom seven stations along the river for the period2011 to 2016. The results of WQI analysis revealed that Diyala River is good to poor at the north of Diyala provincewhile it is poor to very polluted at the south of Baghdad City. The selected parameters wer
... Show More