Metal corrosion is a destructive process for many industrial operations, including oil well acidizing and acid pickling. Therefore, numerous efforts made by many researchers to control the steel corrosion. In the present work, A (E)-4-(((4-(5-mercapto-1,3,4-oxadiazol-2-yl) phenyl) amino) methyl)-2-methoxyphenol (MOPM) has been synthesized and characterized as a new corrosion inhibitor for mild steel in 0.1 M hydrochloric acid. FTIR and 1 HNMR were used in the diagnosis of MOPM, while electrochemical polarization technique was employed to test the performance of inhibitor at various temperatures and inhibitor concentrations. Electrochemical studies showed that MOPM acts as a mixed-type inhibitor with a maximum inhibition efficiency of 93.2% at 30 ◦C and 0.5 M MOPM. Furthermore, the presence of MOPM increased the polarization resistance and depressed the corrosive action. The inhibitory action of MOPM over mild-steel surface was according to Langmuir adsorption isotherm. The calculated free energy of adsorption was − 20.663 kJ.mol− 1 that suggested the spontaneous physical adsorption mode. Value of activation energy was higher in the presence of MOPM, which indicated the formation of protective layer on the metal surface. Quantum chemical calculations that carried out to the chemical structure of MOPM provides a reasonable support to the experimental results
Reducing of ethyl 4-((2-hydroxy-3-methoxybenzylidene)amino)benzoate (1) afford ethyl 4-((2-hydroxy-3-methoxybenzyl)amino)benzoate (2). Reaction of this compound with Vilsmeier reagent affords novel 2-chloro-[1,3] benzoxazine ring (3). The corresponding acid hydrazide of compound 3 was synthesized from reaction of compound (3) with hydrazine hydrate. Newly series of hydrazones (5a–i) were synthesized from reaction of acid hydrazide with various aryl aldehydes. Antibacterial activity of the hydrazones was secerned utilizing gram-negative and gram-positive bacteria. Compound (5b) and (5c) exhibited significant antibacterial ability against both gram-negative and gram-positive bacteria, while the compounds (5a) showed mild antibacteri
... Show MoreReducing of ethyl 4-((2-hydroxy-3-methoxybenzylidene)amino)benzoate (1) afford ethyl 4-((2-hydroxy-3-methoxybenzyl) amino)benzoate (2). Reaction of this compound with Vilsmeier reagent affords novel 2-chloro-[1,3] benzoxazine ring (3). The corresponding acid hydrazide of compound 3 was synthesized from reaction of compound (3) with hydrazine hydrate. Newly series of hydrazones(5a–i) were synthesized from reaction of acid hydrazide with various aryl aldehydes. Antibacterial activity of the hydrazones wassecerned utilizing gram-negative and gram-positive bacteria. Compound (5b) and (5c) exhibited significant antibacterial ability against both gram-negative and gram-positive bacteria, while the compounds(5a) showed mild antibacterial activit
... Show MoreNew Schiff bases derivatives [IV]a-e is prepared via condensation of Derythroascorbic acid with p-substituted aldehydes in dry benzene. To obtain these derivatives, the 5,6-O-isopropylidene-L-ascorbic acid[I] was chosen as starting material, compound prepared from the reaction of L-ascorbic acid as starting material. Compound[I] was prepared from the reaction of L-ascorbic acid with dry acetone in the presence of hydrogen chloride. The esterification of hydroxyl groups at C-2 and C-3 positions with excess ofethyl α –chloroacetate in the presence of sodium acetate produce acorresebonding ester [II] , which was condensed with hydrazine hydrate to give new hydrazide [III] . The new Schiff bases [IV]a-e were synthesized by reaction of acid h
... Show MoreTransactions on Engineering and Sciences
In the current study, new derivatives were synthesized by reaction of N-hydroxyphthalimide with chloro acetyl chloride in the presence of Et3N as a base to form 1,3-dioxoisoindolin-2-yl 2-chloroacetate (B1), which in turn enters several reactions with different amines where it interacts with primary amines to give 1,3-dioxoisoindolin-2-yl acetate derivatives (B2-B4) in basic medium, in the same way it interacts with these amines but with adding KNCS to form thiourea derivatives (B5-B7). It also reacts with diamines to give bis(azanediyl) derivatives (compounds B8-B10). The prepared derivatives were diagnosed using infrared FTIR and 1HNMR,13CNMR for some derivatives. Compounds B4, B5 and B9 were measured as corrosion inhibitors the inhibitio
... Show MoreTransition metal complexes of Y(III), La(III) and Rh(III) with azo dye 2,4-dimethyl-6- (4-nitro-phenylazo)-phenol derived from 4-nitroaniline and 2,4-dimethylphenol were synthesized. Characterization of these compounds has been done on the basis of elemental analysis, electronic data, FT-IR,UV-Vis and 1HNMR, as well as conductivity measurements. The nature of the complexes formed were studies following the mole ratio and continuous variation methods, Beer's law obeyed over a concentration range (1x10-4- 3x10-4). High molar absorbtivity of the complex solutions were observed. From the analytical data, the stoichiomerty of the complexes has been found to be 1:3 (Metal:ligand). On the basis of Physicochemical data octahedral geometries were as
... Show MoreA series of new 2-quinolone derivatives linked to benzene sulphonyl moieties were performed by many steps: the first step involved preparation of different coumarins (A1,A2) by condensation of different substituted phenols with ethyl acetoacetate. The compound A1 was treated with nitric acid to afford two isomers of nitrocoumarin derivatives (A3) and (A4). The prepared compounds (A2, A3) were treated with hydrazine hydrate to synthesize different 2-quinolone compounds (A5,A6) while the coumarin treated with different amines gave compounds (A7,A8). Then the synthesized 2-quinolone compounds (A5-A8) treated with benzene sulphonyl chloride to afford new sulfonamide derivatives (A9-A12). The synthesized compounds were characterized by FT-IR, 1H
... Show More