Metal corrosion is a destructive process for many industrial operations, including oil well acidizing and acid pickling. Therefore, numerous efforts made by many researchers to control the steel corrosion. In the present work, A (E)-4-(((4-(5-mercapto-1,3,4-oxadiazol-2-yl) phenyl) amino) methyl)-2-methoxyphenol (MOPM) has been synthesized and characterized as a new corrosion inhibitor for mild steel in 0.1 M hydrochloric acid. FTIR and 1 HNMR were used in the diagnosis of MOPM, while electrochemical polarization technique was employed to test the performance of inhibitor at various temperatures and inhibitor concentrations. Electrochemical studies showed that MOPM acts as a mixed-type inhibitor with a maximum inhibition efficiency of 93.2% at 30 ◦C and 0.5 M MOPM. Furthermore, the presence of MOPM increased the polarization resistance and depressed the corrosive action. The inhibitory action of MOPM over mild-steel surface was according to Langmuir adsorption isotherm. The calculated free energy of adsorption was − 20.663 kJ.mol− 1 that suggested the spontaneous physical adsorption mode. Value of activation energy was higher in the presence of MOPM, which indicated the formation of protective layer on the metal surface. Quantum chemical calculations that carried out to the chemical structure of MOPM provides a reasonable support to the experimental results
الغرض من هذا العمل هو دراسة الفضاء الإسقاطي ثلاثي الأبعاد PG (3، P) حيث p = 4 باستخدام المعادلات الجبرية وجدنا النقاط والخطوط والمستويات وفي هذا الفضاء نبني (k، ℓ) -span وهي مجموعة من خطوط k لا يتقاطع اثنان منها. نثبت أن الحد الأقصى للكمال (k، ℓ) -span في PG (3،4) هو (17، ℓ) -span ، وهو ما يساوي جميع نقاط المساحة التي تسمى السبريد.
Corrosion of steel reinforcement is one of the biggest problems facing all countries in the world like bridges in the beach area and marine constructions which lead to study these problems and apply some economical solutions. According to the high cost of repair for these constructions, were studied the effect of using kind of chemical compounds sodium nitrite(NaNO2) and sodium silicate(Na2SiO3) as corrosion inhibitors admixture for steel bars that immersed partially in electrolyte solution (water + sodium chloride in 3% conc.) (Approximately similar to the concentration of salt in sea water). The two inhibitors above added each one to the electrolyte solution at concentrations (0.5%, 1% and 2%) for both
... Show MoreAll new compounds synthesized by many reactions starting from a product the compounds [I]a,b from reaction of 3-phenylenediamine or 4-phenylenediamine with chloroacetyl chloride, then the compounds [I]a,b reacted with potassium thiocyanate to yield compounds [II]a,b. While the compounds[III]a,b yield from reacted the compounds [I]a,b with sodium azide then the compounds [III]a,b reacted 1,3-dipolar cycloaddition reaction with acrylic acid to give compounds [IV]a,b and the later compounds reacted with phenylene diamine to product benzimidazole compounds [V]a,b . In addition to synthesized acid chloride compounds [VI]a,b by reacted the compounds [IV]a,b with thionyl chloride .Finally reacted the compounds [VI]a,b with different aromatic amine
... Show MoreReaxys Chemistry database information SciVal Topics Metrics Abstract A novel CoO–ZnO nanocomposite was synthesized by the photo irradiation method using a solution of cobalt and zinc complexes and used as a coating applied by electrophoretic deposition (EPD) for corrosion protection of stainless steel (SS) in saline solution. The samples were characterized using powder XRD, scanning electron microscopy (SEM) and electrochemical polarization. It was also found that the coating was still stable after conducting the corrosion test: it contained no cracks and CoO–ZnO nanocomposites clearly appeared on the surface. SEM showed that the significant surface cracking disappeared. XRD confirmed that CoO–ZnO nanocomposites comprised CoO and Zn
... Show MoreThe work includes synthesis of 1,2,3-triazoles via click conditions and using the microwave irradiation starting from two synthesized azides: 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl azide (5) and perfluorobutylethyl azide (10) and different terminal alkynes. It also includes microwave enhanced synthesis of tetrazoles via the reaction of two synthesized azides i.e., perfluorobutylethyl azide (10) and 1,5-diazidopentane (13) with benzoyl cyanide. Most of the prepared compounds have been characterized by: TLC, FT-IR, 1H NMR, 13C NMR, LC-MS and microelemental analysis
This work is based on the synthesis of Cobalt(II) and Cadmium(II) mixed-ligands compounds obtained from the reaction of N'-(4-methylsulfanyl-benzoyl)-hydrazine carbodithioic acid methyl ester as a ligand and using ethylendiamine (en), 2,2'-bipyridine (bipy) or 1,10-phenanthroline (phen) as a co-ligand. The synthesis of ligand (HL) was based on multi-steps synthetic procedure. The reaction of 4-methylsulfanyl-benzoyl chloride with hydrazine gave 4-methylsulfanyl-benzoic acid hydrazide. This compound was reacted with carbon disulfide and potassium hydroxide in methanol to yield N'-(4-methylsulfanylbenzoyl)-hydrazine potassium thiocarbamate, which upon reaction with methyl iodide resulted in the formation of the ligand. A range of physico-chem
... Show MoreIn this work, synthesized N4,N4`-bis(2, 3, 4 nitro benzylidene) biphenyi-4-4`-diamine(B1-B3) , was tested as an inhibitors in controlling the corrosion of carbon steel in NaCl 3.5% solution by using open circuit potential (OCP),at four different temperatures (293, 303, 313 and 323 K). Furthermore, the surface morphology was investigated using the Atomic force microscopy (AFM). The effect of using different Schiff bases and temperature was also investigated. Schiff bases was synthesized and characterized via using. Fourier Transform Infrared Spectroscopy (FT-IR)and Atomic Force Microscope (AFM) characterized . The experimental results shown that Schiff bases can consider as an excellent corrosion inhibitors for carbon steel in NaCl 3
... Show More