Preferred Language
Articles
/
Xxc9CpEBVTCNdQwCmpJC
High Speed Shock Peening by Fiber Laser for Al Alloy 6061-T6 Thin Sheets
...Show More Authors

Under cyclic loading, aluminum alloys exhibit less fatigue life than steel alloys of similar strength and this is considered as Achilles's heel of such alloys. A nanosecond fiber laser was used to apply high speed laser shock peening process on thin aluminum plates in order to enhance the fatigue life by introducing compressive residual stresses. The effect of three working parameters namely the pulse repetition rate (PRR), spot size (ω) and scanning speed (v) on limiting the fatigue failure was investigated. The optimum results, represented by the longer fatigue life, were at PRR of 22.5 kHz, ω of 0.04 mm and at both v's of 200 and 500 mm/sec. The research yielded significant results represented by a maximum percentage increase in the fatigue life of 505.25% accompanied by the least deformation for the processed surfaces. SEM images for the specimens processed by the optimum process conditions imply no ablation has occurred at the surface, and the process is completely cold. X-ray diffraction analysis indicates a reduction in grains size, an increase of 28.56% in the lengths of dislocations and formation of effective compressive residual stress at the surface and beneath reaches to 700 μm.

Scopus Clarivate Crossref
View Publication
Publication Date
Mon Oct 01 2018
Journal Name
Iraqi Journal Of Physics
Spectroscopic analysis of magnesium-aluminum alloys by laser induced breakdown spectroscopy
...Show More Authors

In this work, the spectra of plasma glow produced by Nd:YAG laser operated at 1.064 μm on Al-Mg alloys with same molar ratio samples in air were analyzed by comparing the atomic lines of aluminum and magnesium with that of strong standard lines. The effect of laser energies on spectral lines, produced by laser ablation, were investigated using optical spectroscopy, the electron density was measured utilizing the Stark broadening of magnesium-aluminum lines and the electron temperature was calculated from the standard Boltzmann plot method. The results that show the electron temperature increases in magnesium and aluminum targets but decreases in magnesium: aluminum alloy target, also show the electron density increase all the aluminum,

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Iraqi Journal Of Physics
Nanosecond laser pulses for aluminum and copper drilling
...Show More Authors

Nd:YAG laser pulses of 9 nanosecond pulse duration and operating wavelength at 1.06 μm, were utilized to drill high thermal conductivity and high reflectivity aluminum and copper foils. The results showed a dependence of drilled holes characteristics on laser power density and the number of laser pulses used. Drilled depth of 74 ϻm was obtained in aluminum at 11.036×108 W/cm2 of laser power density. Due to its higher melting point, copper required higher laser power density and/or larger number of laser pulses to melt, and a maximum depth of 25 μm was reached at 13.46×108 W/cm2 using single laser pulse.

View Publication Preview PDF
Crossref
Publication Date
Wed Apr 19 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A Study Mechanical Properties for Bark Fiber Reinforced Polyester Composit
...Show More Authors

Bark fiber has high potential use for composite reinforcement in biocomposite material. The aim of this study is the mechanical properties of Bark fiber reinforced polester composite with varying fiber weight fraction (0% , 5% , 10% , 20%, 30% and 40%) hand lay-up technique which  was used to prepare the composite , specimens for tensile , flexural and impact test according to the ASTM D638 , ASTMD790 , and Iso-179. The over all results showed that  the composite is reinforced with  Bark fiber at weight (10%) higher mechanical properties , and the composite showed improved  mechanical (Flexural).

View Publication Preview PDF
Publication Date
Sun Dec 07 2008
Journal Name
Baghdad Science Journal
Optical Properties for SeTe Thin Films
...Show More Authors

Chalcogenide glasses SeTe have been prepared from the high purity constituent elements .Thin films of SeTe compound have been deposited by thermal evaporation onto glass substrates for different values of film thickness . The effect of varying thickness on the value of the optical gap is reported . The resultant films were in amorphous nature . The transmittance spectra was measured for that films in the wavelength range (400-1100) nm . The energy gap for such films was determined .

View Publication Preview PDF
Crossref
Publication Date
Wed May 29 2019
Journal Name
Iraqi Journal Of Physics
A Spectroscopic and structural study of FeCoSb alloy
...Show More Authors

Fe, Co and Sb nanopowders were fruitfully prepared by electrical wire explosion method in Double distilled and de-ionized water (DDDW) media. The formation of iron, cobalt and antimony (FeCoSb) alloy nanopowder was monitored by X-ray diffraction. The x-ray diffraction pattern indicates that there are iron, cobalt and antimony peaks. Optical properties of this alloy nanoparticles were characterized by UV-Visible absorption spectra. The absorption peak position is shifted to the lower wavelengths when the current increases. That means the mean size of the nanoparticles controlled by changing the magnitude of the current. The surface morphological analysis is carried out by employing Scanning Electron Microscope (SEM). Particles with varies

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Mar 01 2014
Journal Name
Eeng. &tech.journal
Preparation and Characterization of High Quality SnO2 Films Grown by (HPCVD)
...Show More Authors

ABSTRACT: In this research SnO2 thin films have been prepared by using hot plate atmospheric pressure chemical vapor deposition (HPCVD) on glass and Si (n-type) substrates at various temperatures. Optical properties have been measured by UV-VIS spectrophotometer, maximum transmittance about (94%) at 400 0C. Structure properties have been studied by using X-ray diffraction (XRD) , its shows that all films have a crystalline structure in nature and by increasing growth temperature from(350-500) 0C diffraction peaks becomes sharper and grain size has been change. Atomic force microscopy (AFM) uses to analyze the morphology of the Tine Oxides surface structure. Roughness & Root mean square for different temperature have been investigated. The r

... Show More
Preview PDF
Publication Date
Mon Dec 05 2022
Journal Name
F1000research
Enhancement of surface properties of polyetheretherketone implant material by fractional laser texturing
...Show More Authors

Background: Polyetheretherketone (PEEK) is a promising implant material due to its superior biomechanical strength. However, due to its hydrophobic nature and lack of cellular adhesion properties, it has poor integration with bone tissue. Methods: A fractional CO2 laser was used with various parameters for surface texturing of PEEK substrate to enhance its surface properties. An optical microscope and field-emission scanning electron microscope (FESEM) were used to examine the surface morphology of untextured and laser-textured samples. Energy dispersive X-ray spectroscopy (EDX) was performed to determine the effect of the laser on the microstructure of PEEK. Surface microroughness, atomic force microscopy (AFM), and wettability were invest

... Show More
View Publication Preview PDF
Crossref (4)
Scopus Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Journal Of Physics: Conference Series
High pollutant levels of produced water around Al-Ahdab oil field in Wasit governorate (Iraq)
...Show More Authors
Abstract<p>Exploration activities of the oil and gas industry generate loads of formation water called produced water (PW) up to thousands of tons each day. Depending on the geographic area, formation depth, oil production techniques, and age of oil supply wells, PW from different oil fields contain different chemical compositions. Currently, PW is also known as industrial waste water containing heavy metals that are toxic to humans and the environment, requiring special processing so that they can be disposed of in the environment. To determine the heavy metals content in PW from the Al-Ahdab oil field (AOF), the Ministry of Science and Technology/Agricultural Research Department determined som</p> ... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Fri Feb 01 2019
Journal Name
International Journal Of Mechanical Engineering And Technology (ijmet)
INVESTIGATION THE PROPERTIES OF SILICONE RUBBER BLEND REINFORCED BY NATURAL NANOPARTICLES AND UHMWPE FIBER
...Show More Authors

Many faces are exposed to degradation, discoloration, changes in humidity. The primary objective has improved some properties of hybrid nanocomposites materials that used for restoring of the function maxillofacial prosthesis and improving the esthetic. In the present research different lengths chopped and continuous of ultrahigh molecular weight polyethylene (UHMWPE) fiber was added at selected percentage (0.0, 0.2% and 1%) to polymer blend composite (95%SR /5%PMMA: 0.2% Pomegranate Peels Powder (PPP)) for developing the properties of silicone rubber used for the maxillofacial prosthesis applications. Some mechanical and physical properties were done on the all prepared samples. The results showed that all properties have improved when add

... Show More
View Publication Preview PDF
Scopus (6)
Scopus
Publication Date
Sat Jan 02 2021
Journal Name
Al-qadisiyah Journal For Engineering Sciences
Improving the Moisture Damage Resistance of HMA by Using Ceramic Fiber and Hydrated Lime
...Show More Authors

The Moisture damage is considered as one of the main challenge for the experts in the field of asphalt pavement design. The aims of the present study is to modify moisture resistance of the asphalt concrete by utilizing ceramic fibers as a type of reinforcement incorporated with hydrated lime. For this purpose, a penetration grade of the asphalt cement (40-50) was utilized as a binder with an aggregate of the maximum nominal size of 12.5mm and mineral filler limestone dust. A series of specimens has been fabricated by utilizing 0.50, 1.0, 1.5, and 2.0 percentages of ceramic fibers. For each of these contents, another subsequent group of specimens with hydrated lime with 0.0, 1.0, 1.5, and 2.0 percentages were moulded. For the additi

... Show More
Crossref (1)
Crossref