Traumatic spinal cord injury is a serious neurological disorder. Patients experience a plethora of symptoms that can be attributed to the nerve fiber tracts that are compromised. This includes limb weakness, sensory impairment, and truncal instability, as well as a variety of autonomic abnormalities. This article will discuss how machine learning classification can be used to characterize the initial impairment and subsequent recovery of electromyography signals in an non-human primate model of traumatic spinal cord injury. The ultimate objective is to identify potential treatments for traumatic spinal cord injury. This work focuses specifically on finding a suitable classifier that differentiates between two distinct experimental stages (pre-and post-lesion) using electromyography signals. Eight time-domain features were extracted from the collected electromyography data. To overcome the imbalanced dataset issue, synthetic minority oversampling technique was applied. Different ML classification techniques were applied including multilayer perceptron, support vector machine, K-nearest neighbors, and radial basis function network; then their performances were compared. A confusion matrix and five other statistical metrics (sensitivity, specificity, precision, accuracy, and F-measure) were used to evaluate the performance of the generated classifiers. The results showed that the best classifier for the left- and right-side data is the multilayer perceptron with a total F-measure of 79.5% and 86.0% for the left and right sides, respectively. This work will help to build a reliable classifier that can differentiate between these two phases by utilizing some extracted time-domain electromyography features.
The current research aims to adopt production quality decisions as the most important decisions , because they are accompanied by customer satisfaction through monitoring the quality of drinking water in iraq which reach through the pipeline network associated with water treatment projects of Tigris and Euphrates rivers. One of the indicators of quality control was the drawing of the C-chart by specifying the central line and the upper and lower limit of the control and the diagnosis of whether the production system as a whole within the scope of quality control or not and determine the strength and significance of the correlation between the quantities of water And actual needs for customers , the research has reached a number o
... Show MoreSimple and sensitive kinetic methods are developed for the determination of Paracetamol in pure form and in pharmaceutical preparations. The methods are based on direct reaction (oxidative-coupling reaction) of Paracetamol with o-cresol in the presence of sodium periodate in alkaline medium, to form an intense blue-water-soluble dye that is stable at room temperature, and was followed spectrophotometriclly at λmax= 612 nm. The reaction was studied kinetically by Initial rate and fixed time (at 25 minutes) methods, and the optimization of conditions were fixed. The calibration graphs for drug determination were linear in the concentration ranges (1-7 μg.ml-1) for the initial rate and (1-10 μg.ml-1) for the fixed time methods at 25 min.
... Show MoreNon-alcoholic fatty liver disease (NAFLD), characterized by hepatic fat accumulation in individuals consuming little or no alcohol, has become highly prevalent globally. Oxidative stress plays a central role in instigating inflammation and cell death pathways driving NAFLD progression. This case–control study aimed to elucidate the association between circulating levels of the pivotal non-enzymatic antioxidants – coenzyme Q10 and vitamins E and C – and liver injury parameters among 60 Iraqi NAFLD patients versus 30 healthy controls. NAFLD diagnosis entailed over 5% hepatic steatosis on ultrasound excluding other etiologies. Patients spanned three age groups: 20–29, 30–39, an
<span lang="EN-US">Diabetes is one of the deadliest diseases in the world that can lead to stroke, blindness, organ failure, and amputation of lower limbs. Researches state that diabetes can be controlled if it is detected at an early stage. Scientists are becoming more interested in classification algorithms in diagnosing diseases. In this study, we have analyzed the performance of five classification algorithms namely naïve Bayes, support vector machine, multi layer perceptron artificial neural network, decision tree, and random forest using diabetes dataset that contains the information of 2000 female patients. Various metrics were applied in evaluating the performance of the classifiers such as precision, area under the c
... Show MoreBackground: Traumatic ulcerative granuloma with stromal eosinophilia is an impressive benign chronic ulcerative lesion of the oral mucosa with vague etiopathogenesis. It was supposed to represent an oral counterpart of primary cutaneous CD30+ lymphoproliferative disorder. Histopathologically, it is characterized by mixed inflammatory infiltrate predominated by histiocytes, lymphocytes and eosinophils along with presence of scattered large atypical mononuclear cells. It has worrisome clinical presentation. It may heal spontaneously, but in most occasions it persists and never heal unless removed surgically (incisional or excisional biopsy). A rare subset may show worrisome immunohistochemical features. Follow up is highly recommended. Mat
... Show MoreThe purpose of this paper is to model and forecast the white oil during the period (2012-2019) using volatility GARCH-class. After showing that squared returns of white oil have a significant long memory in the volatility, the return series based on fractional GARCH models are estimated and forecasted for the mean and volatility by quasi maximum likelihood QML as a traditional method. While the competition includes machine learning approaches using Support Vector Regression (SVR). Results showed that the best appropriate model among many other models to forecast the volatility, depending on the lowest value of Akaike information criterion and Schwartz information criterion, also the parameters must be significant. In addition, the residuals
... Show MoreThe internet of medical things (IoMT), which is expected the lead to the biggest technology in worldwide distribution. Using 5th generation (5G) transmission, market possibilities and hazards related to IoMT are improved and detected. This framework describes a strategy for proactively addressing worries and offering a forum to promote development, alter attitudes and maintain people's confidence in the broader healthcare system without compromising security. It is combined with a data offloading system to speed up the transmission of medical data and improved the quality of service (QoS). As a result of this development, we suggested the enriched energy efficient fuzzy (EEEF) data offloading technique to enhance the delivery of dat
... Show MoreThis paper provides an attempt for modeling rate of penetration (ROP) for an Iraqi oil field with aid of mud logging data. Data of Umm Radhuma formation was selected for this modeling. These data include weight on bit, rotary speed, flow rate and mud density. A statistical approach was applied on these data for improving rate of penetration modeling. As result, an empirical linear ROP model has been developed with good fitness when compared with actual data. Also, a nonlinear regression analysis of different forms was attempted, and the results showed that the power model has good predicting capability with respect to other forms.
The internet of medical things (IoMT), which is expected the lead to the biggest technology in worldwide distribution. Using 5th generation (5G) transmission, market possibilities and hazards related to IoMT are improved and detected. This framework describes a strategy for proactively addressing worries and offering a forum to promote development, alter attitudes and maintain people's confidence in the broader healthcare system without compromising security. It is combined with a data offloading system to speed up the transmission of medical data and improved the quality of service (QoS). As a result of this development, we suggested the enriched energy efficient fuzzy (EEEF) data offloading technique to enhance the delivery of dat
... Show More3D models delivered from digital photogrammetric techniques have massively increased and developed to meet the requirements of many applications. The reliability of these models is basically dependent on the data processing cycle and the adopted tool solution in addition to data quality. Agisoft PhotoScan is a professional image-based 3D modelling software, which seeks to create orderly, precise n 3D content from fixed images. It works with arbitrary images those qualified in both controlled and uncontrolled conditions. Following the recommendations of many users all around the globe, Agisoft PhotoScan, has become an important source to generate precise 3D data for different applications. How reliable is this data for accurate 3D mo
... Show More