Traumatic spinal cord injury is a serious neurological disorder. Patients experience a plethora of symptoms that can be attributed to the nerve fiber tracts that are compromised. This includes limb weakness, sensory impairment, and truncal instability, as well as a variety of autonomic abnormalities. This article will discuss how machine learning classification can be used to characterize the initial impairment and subsequent recovery of electromyography signals in an non-human primate model of traumatic spinal cord injury. The ultimate objective is to identify potential treatments for traumatic spinal cord injury. This work focuses specifically on finding a suitable classifier that differentiates between two distinct experimental stages (pre-and post-lesion) using electromyography signals. Eight time-domain features were extracted from the collected electromyography data. To overcome the imbalanced dataset issue, synthetic minority oversampling technique was applied. Different ML classification techniques were applied including multilayer perceptron, support vector machine, K-nearest neighbors, and radial basis function network; then their performances were compared. A confusion matrix and five other statistical metrics (sensitivity, specificity, precision, accuracy, and F-measure) were used to evaluate the performance of the generated classifiers. The results showed that the best classifier for the left- and right-side data is the multilayer perceptron with a total F-measure of 79.5% and 86.0% for the left and right sides, respectively. This work will help to build a reliable classifier that can differentiate between these two phases by utilizing some extracted time-domain electromyography features.
The oil and gas industry relies heavily on IT innovations to manage business processes, but the exponential generation of data has led to concerns about processing big data, generating valuable insights, and making timely decisions. Many companies have adopted Big Data Analytics (BDA) solutions to address these challenges. However, determining the adoption of BDA solutions requires a thorough understanding of the contextual factors influencing these decisions. This research explores these factors using a new Technology-Organisation-Environment (TOE) framework, presenting technological, organisational, and environmental factors. The study used a Delphi research method and seven heterogeneous panelists from an Oman oil and gas company
... Show MoreHealth insurance and its benefits are of great importance and impact on the employees who represent the human capital of each organization because they are related to the health reality. The study took into account the most important and the last of his writing of the concepts and literary reviews and enriched the theoretical part of the practical side has addressed the financial data and analysis for the period from 2013 to 2017 to know the impact and the relationship between the variables that They were reviewed on the theoretical side. The study came out with a number of results, on the basis of which practical conclusions were drawn and reflected what was observed on the basis of which the recommendations were formulated
Data compression offers an attractive approach to reducing communication costs using available bandwidth effectively. It makes sense to pursue research on developing algorithms that can most effectively use available network. It is also important to consider the security aspect of the data being transmitted is vulnerable to attacks. The basic aim of this work is to develop a module for combining the operation of compression and encryption on the same set of data to perform these two operations simultaneously. This is achieved through embedding encryption into compression algorithms since both cryptographic ciphers and entropy coders bear certain resemblance in the sense of secrecy. First in the secure compression module, the given text is p
... Show MoreAs computers become part of our everyday life, more and more people are experiencing a
variety of ocular symptoms related to computer use. These include eyestrain, tired eyes, irritation,
redness, blurred vision, and double vision, collectively referred to as computer vision syndrome.
The effect of CVS to the body such as back and shoulder pain, wrist problem and neck pain.
Many risk factors are identified in this paper.
Primary prevention strategies have largely been confined to addressing environmental
exposure to ergonomic risk factors, since to date, no clear cause for this work-related neck pain
has been acknowledged. Today, millions of children use computers on a daily basis. Extensive
viewing of the compute
Abstract
The research aimed to test the relationship between the size of investment allocations in the agricultural sector in Iraq and their determinants using the Ordinary Least Squares (OLS) method compared to the Error Correction Model (ECM) approach. The time series data for the period from 1990 to 2021 was utilized. The analysis showed that the estimates obtained using the ECM were more accurate and significant than those obtained using the OLS method. Johansen's test indicated the presence of a long-term equilibrium relationship between the size of investment allocations and their determinants. The results of th
... Show MoreAsset management involves efficient planning of economic and technical performance characteristics of infrastructure systems. Managing a sewer network requires various types of activities so the network can be able to achieve a certain level of performance. During the lifetime of the network various components will start to deteriorate leading to bad performance and can damage the infrastructure. The main objective of this research is to develop deterioration models to provide an assessment tool for determining the serviceability of the sewer networks in Baghdad city the Zeppelin line was selected as a case study, as well as to give top management authorities the appropriate decision making. Different modeling techniques
... Show MoreBackground: Oral diseases persist to be a major health problem all over the world. Various bacteria and fungi are found to be the possible pathogensresponsible for the oral diseases. Moringa oleifera it is an extraordinary nutritious vegetable tree with many different uses. These leaves have high medicinal value. In the present study, antibacterial and antifungal activities of aqueous extracts of plant Moringa oleifera in comparison to chlorohexidene gluconate and deionized water were determined. Materials and methods: The leaves of plant of Moringa oleifera were collected from College of Pharmacy; Baghdad, Iraq. Tested microorganism (bacterial and fungal) was isolated from different clinical specimens. In-vitroantimicrobial activity was pe
... Show MoreA study carried out for study effect of furfural that extracted from corn cobs by using specialized reaction system laboratory on phytopathogenic fungi: Pythium aphanidermatum, Rhizoctonia solani, Macrophomina phaseolina and Fusarium solani in addition to biocontrol fungus Trichoderma viride were isolated from infected plants and from their rhizosphere . The preparation results of different concentrations from stock solution in concentration 1% of furflural showed that The concentration was 100 ppm of furfural was inhibited the growth of P. aphanidermatum46.7 % and the was in concentration 400 ppm. while the concentration 500 ppm caused inhibition 50% and 41.1% of R. solani and F. solani respectively. Whereas the concentration 500 pp
... Show MoreCorrect grading of apple slices can help ensure quality and improve the marketability of the final product, which can impact the overall development of the apple slice industry post-harvest. The study intends to employ the convolutional neural network (CNN) architectures of ResNet-18 and DenseNet-201 and classical machine learning (ML) classifiers such as Wide Neural Networks (WNN), Naïve Bayes (NB), and two kernels of support vector machines (SVM) to classify apple slices into different hardness classes based on their RGB values. Our research data showed that the DenseNet-201 features classified by the SVM-Cubic kernel had the highest accuracy and lowest standard deviation (SD) among all the methods we tested, at 89.51 % 1.66 %. This
... Show More