Traumatic spinal cord injury is a serious neurological disorder. Patients experience a plethora of symptoms that can be attributed to the nerve fiber tracts that are compromised. This includes limb weakness, sensory impairment, and truncal instability, as well as a variety of autonomic abnormalities. This article will discuss how machine learning classification can be used to characterize the initial impairment and subsequent recovery of electromyography signals in an non-human primate model of traumatic spinal cord injury. The ultimate objective is to identify potential treatments for traumatic spinal cord injury. This work focuses specifically on finding a suitable classifier that differentiates between two distinct experimental stages (pre-and post-lesion) using electromyography signals. Eight time-domain features were extracted from the collected electromyography data. To overcome the imbalanced dataset issue, synthetic minority oversampling technique was applied. Different ML classification techniques were applied including multilayer perceptron, support vector machine, K-nearest neighbors, and radial basis function network; then their performances were compared. A confusion matrix and five other statistical metrics (sensitivity, specificity, precision, accuracy, and F-measure) were used to evaluate the performance of the generated classifiers. The results showed that the best classifier for the left- and right-side data is the multilayer perceptron with a total F-measure of 79.5% and 86.0% for the left and right sides, respectively. This work will help to build a reliable classifier that can differentiate between these two phases by utilizing some extracted time-domain electromyography features.
Some experiments need to know the extent of their usefulness to continue providing them or not. This is done through the fuzzy regression discontinuous model, where the Epanechnikov Kernel and Triangular Kernel were used to estimate the model by generating data from the Monte Carlo experiment and comparing the results obtained. It was found that the. Epanechnikov Kernel has a least mean squared error.
Objective: Zerumbone (ZER) is a well-known natural compound that has been reported to have anti-cancer effect. Thus, this study investigated the ZER potential to inhibit Thymidine Phosphorylase (TP) and the ability to trigger Reactive oxygen species (ROS)-mediated cytotoxicity in non-small cell lung cancer, NCI-H460, cell line. Material and Method: The antiangiogenic activity for ZER was evaluated by using the thymidine phosphorylase inhibitory test. Reactive oxygen species (ROS) production was determined via DCFDA dye by using flow cytometry. Result and Discussion: ZER was found to be potent TP inhibitory with the IC50 value of 50.3± 0.31 μg/ml or 230±1.42 µM. NCI-H460 cells upon treatment with ZER produced sign
... Show MoreSuccessive waves and generations of terrorists attacked the Iraqis in the years following the fall of the regime in Iraq in 2003, after the US invasion of the country under the pretext of weapons of mass destruction. Hence, the Iraqi people enrolled in ongoing war with these armed groups which led to massive casualties due to blasts and missile injuries.
Mechanism of blasts injury can be classified into primary, secondary, tertiary, and quaternary. While bullet injuries can be classified into low and high-energy injuries, the type and severity of the injury will influence the type of management, together with facilities available in
Objective: Zerumbone (ZER) is a well-known natural compound that has been reported to have anti-cancer effect. Thus, this study investigated the ZER potential to inhibit Thymidine Phosphorylase (TP) and the ability to trigger Reactive oxygen species (ROS)-mediated cytotoxicity in non-small cell lung cancer, NCI-H460, cell line. Material and Method: The antiangiogenic activity for ZER was evaluated by using the thymidine phosphorylase inhibitory test. Reactive oxygen species (ROS) production was determined via DCFDA dye by using flow cytometry. Result and Discussion: ZER was found to be potent TP inhibitory with the IC50 value of 50.3± 0.31 μg/ml or 230±1.42 µM. NCI-H460 cells upon treatment with ZER produced sign
... Show MoreThe study of improved model for measuring the total nuclear fusion cross section characteristics the D-D reaction may play an important role in deciding or determining the hot plasma parameters such as mean free path , the reaction rate , reactivity and energy for emitted neutrons or protons in our work we see the it is necessary to modify the empirical formulas included the total cross section in order to arrive or achieve good agreement with the international publish result.
This work is devoted to study the properties of the ground states such as the root-mean square ( ) proton, charge, neutron and matter radii, nuclear density distributions and elastic electron scattering charge form factors for Carbon Isotopes (9C, 12C, 13C, 15C, 16C, 17C, 19C and 22C). The calculations are based on two approaches; the first is by applying the transformed harmonic-oscillator (THO) wavefunctions in local scale transformation (LST) to all nuclear subshells for only 9C, 12C, 13C and 22C. In the second approach, the 9C, 15C, 16C, 17C and 19C isotopes are studied by dividing the whole nuclear system into two parts; the first is the compact core part and the second is the halo part. The core and halo parts are studied using the
... Show MoreCloud computing provides huge amount of area for storage of the data, but with an increase of number of users and size of their data, cloud storage environment faces earnest problem such as saving storage space, managing this large data, security and privacy of data. To save space in cloud storage one of the important methods is data deduplication, it is one of the compression technique that allows only one copy of the data to be saved and eliminate the extra copies. To offer security and privacy of the sensitive data while supporting the deduplication, In this work attacks that exploit the hybrid cloud deduplication have been identified, allowing an attacker to gain access to the files of other users based on very small hash signatures of
... Show MoreThis article aims to explore the importance of estimating the a semiparametric regression function ,where we suggest a new estimator beside the other combined estimators and then we make a comparison among them by using simulation technique . Through the simulation results we find that the suggest estimator is the best with the first and second models ,wherealse for the third model we find Burman and Chaudhuri (B&C) is best.