Traumatic spinal cord injury is a serious neurological disorder. Patients experience a plethora of symptoms that can be attributed to the nerve fiber tracts that are compromised. This includes limb weakness, sensory impairment, and truncal instability, as well as a variety of autonomic abnormalities. This article will discuss how machine learning classification can be used to characterize the initial impairment and subsequent recovery of electromyography signals in an non-human primate model of traumatic spinal cord injury. The ultimate objective is to identify potential treatments for traumatic spinal cord injury. This work focuses specifically on finding a suitable classifier that differentiates between two distinct experimental stages (pre-and post-lesion) using electromyography signals. Eight time-domain features were extracted from the collected electromyography data. To overcome the imbalanced dataset issue, synthetic minority oversampling technique was applied. Different ML classification techniques were applied including multilayer perceptron, support vector machine, K-nearest neighbors, and radial basis function network; then their performances were compared. A confusion matrix and five other statistical metrics (sensitivity, specificity, precision, accuracy, and F-measure) were used to evaluate the performance of the generated classifiers. The results showed that the best classifier for the left- and right-side data is the multilayer perceptron with a total F-measure of 79.5% and 86.0% for the left and right sides, respectively. This work will help to build a reliable classifier that can differentiate between these two phases by utilizing some extracted time-domain electromyography features.
Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreThe hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s
... Show MoreThis paper aims at the analytical level to know the security topics that were used with data journalism, and the expression methods used in the statements of the Security Media Cell, as well as to identify the means of clarification used in data journalism. About the Security Media Cell, and the methods preferred by the public in presenting press releases, especially determining the strength of the respondents' attitude towards the data issued by the Security Media Cell. On the Security Media Cell, while the field study included the distribution of a questionnaire to the public of Baghdad Governorate. The study reached several results, the most important of which is the interest of the security media cell in presenting its data in differ
... Show MoreIn this paper new methods were presented based on technique of differences which is the difference- based modified jackknifed generalized ridge regression estimator(DMJGR) and difference-based generalized jackknifed ridge regression estimator(DGJR), in estimating the parameters of linear part of the partially linear model. As for the nonlinear part represented by the nonparametric function, it was estimated using Nadaraya Watson smoother. The partially linear model was compared using these proposed methods with other estimators based on differencing technique through the MSE comparison criterion in simulation study.
Ketoprofen has recently been proven to offer therapeutic potential in preventing cancers such as colorectal and lung tumors, as well as in treating neurological illnesses. The goal of this review is to show the methods that have been used for determining ketoprofen in pharmaceutical formulations. Precision product quality control is crucial to confirm the composition of the drugs in pharmaceutical use. Several analytical techniques, including chromatographic and spectroscopic methods, have been used for determining ketoprofen in different sample forms such as a tablet, capsule, ampoule, gel, and human plasma. The limit of detection of ketoprofen was 0.1 ng/ ml using liquid chromatography with tandem mass spectrometry, while it was 0
... Show MoreKetoprofen has recently been proven to offer therapeutic potential in preventing cancers such as colorectal and lung tumors, as well as in treating neurological illnesses. The goal of this review is to show the methods that have been used for determining ketoprofen in pharmaceutical formulations. Precision product quality control is crucial to confirm the composition of the drugs in pharmaceutical use. Several analytical techniques, including chromatographic and spectroscopic methods, have been used for determining ketoprofen in different sample forms such as a tablet, capsule, ampoule, gel, and human plasma. The limit of detection of ketoprofen was 0.1 ng/ ml using liquid chromatography with tandem mass spectrometry, while it was 0.01-
... Show MoreBackground: Oral anticoagulation medication, warfarin and non-vitamin k antagonist oral anticoagulants (NOAC) may require long term use which may affect patients’ satisfaction with their treatment and their quality of life (QOL). Objective: To compare the quality of life and treatment satisfaction among groups of patients using different anticoagulant therapies (warfarin and NOAC). Patients and methods: A cross-sectional study was performed at Ibn Al-Bitar Hospital for cardiac surgery in Baghdad in the period between December 2022 to May 2023. The study population included a convenient sample of patients receiving either warfarin or non-vitamin k antagonist oral anticoagulants treatment. The Arabic version of the short form 12
... Show MoreEconomic organizations operate in a dynamic environment, which necessitates the use of quantitative techniques to make their decisions. Here, the role of forecasting production plans emerges. So, this study aims to the analysis of the results of applying forecasting methods to production plans for the past years, in the Diyala State Company for Electrical Industries.
The Diyala State Company for Electrical Industries was chosen as a field of research for its role in providing distinguished products as well as the development and growth of its products and quality, and because it produces many products, and the study period was limited to ten years, from 2010 to 2019. This study used the descriptive approa
... Show MoreObjectives: To evaluate the effect of non-pharmacological pain relief methods on duration of labor stage.Methodology: A quasi-experimental study design was conducted during the period of (4th July 2018 through 24th October 2018) on non-probability of (60) women (30) of them were a control group and (30) were the study group whom admitted to Al-Elwyia Maternity Teaching Hospital suffering from labor pain. A questionnaire was used as a tool of data collection Descriptive& Inferential statistical analyses were used to analyze the data.Result: The highest percentages of study and control groups were in age group (< 20) years old, primary schools graduates, housewife, from "urban area", within low category of socioeconomic scale,
... Show MoreObjectives: To evaluate the effect of non-pharmacological pain relief methods on duration of labor stage.
Methodology: A quasi-experimental study design was conducted during the period of (4th July 2018 through 24th October 2018) on non-probability of (60) women (30) of them were a control group and (30) were the study group whom admitted to Al-Elwyia Maternity Teaching Hospital suffering from labor pain. A questionnaire was used as a tool of data collection Descriptive& Inferential statistical analyses were used to analyze the data.
Result: The highest percentages of study and control groups were in age group (< 20) years old, primary schools graduates, housewife, from "urban area", within low category of socioeconomic scal