Preferred Language
Articles
/
XhfW0IwBVTCNdQwC_Qhr
Comparison study of classification methods of intramuscular electromyography data for non-human primate model of traumatic spinal cord injury
...Show More Authors

Traumatic spinal cord injury is a serious neurological disorder. Patients experience a plethora of symptoms that can be attributed to the nerve fiber tracts that are compromised. This includes limb weakness, sensory impairment, and truncal instability, as well as a variety of autonomic abnormalities. This article will discuss how machine learning classification can be used to characterize the initial impairment and subsequent recovery of electromyography signals in an non-human primate model of traumatic spinal cord injury. The ultimate objective is to identify potential treatments for traumatic spinal cord injury. This work focuses specifically on finding a suitable classifier that differentiates between two distinct experimental stages (pre-and post-lesion) using electromyography signals. Eight time-domain features were extracted from the collected electromyography data. To overcome the imbalanced dataset issue, synthetic minority oversampling technique was applied. Different ML classification techniques were applied including multilayer perceptron, support vector machine, K-nearest neighbors, and radial basis function network; then their performances were compared. A confusion matrix and five other statistical metrics (sensitivity, specificity, precision, accuracy, and F-measure) were used to evaluate the performance of the generated classifiers. The results showed that the best classifier for the left- and right-side data is the multilayer perceptron with a total F-measure of 79.5% and 86.0% for the left and right sides, respectively. This work will help to build a reliable classifier that can differentiate between these two phases by utilizing some extracted time-domain electromyography features.

Scopus Clarivate Crossref
View Publication
Publication Date
Wed Dec 01 2021
Journal Name
Journal Of Economics And Administrative Sciences
The efficiency of Using Attribute and Performance- Based Activity Methods to Raise the Level of Control Deviation A field study in Jaber Bin Hayyan Factory
...Show More Authors

Cost is the essence of any production process for it is one of the requirements for the continuity of activities so as to increase the profitability of the economic unit and to support the competitive situation in the market. Therefore, there should be an overall control to reduce the cost without compromising the product quality; to achieve this, the management should have detailed credible and reliable information about the cost to be measured, collected, understood and to analyze the causes for the spread of deviations and obstacles the management faces, and to search for the factors that trigger the emergence of these deviations and obstacles

View Publication Preview PDF
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Dental Hypotheses
Comparison of Microleakage of Composite and Glass Ionomer Restorations in Primary Molars Pretreated with Silver Diamine Fluoride at Two Time Intervals: An In Vitro study
...Show More Authors

View Publication
Scopus (4)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sun Aug 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of the performance of some r- (k,d) class estimators with the (PCTP) estimator that used in estimating the general linear regression model in the presence of autocorrelation and multicollinearity problems at the same time "
...Show More Authors

In the analysis of multiple linear regression, the problem of multicollinearity and auto-correlation drew the attention of many researchers, and given the appearance of these two problems together and their bad effect on the estimation, some of the researchers found new methods to address these two problems together at the same time. In this research a comparison for the performance of the Principal Components Two Parameter estimator (PCTP) and The (r-k) class estimator and the r-(k,d) class estimator by conducting a simulation study and through the results and under the mean square error (MSE) criterion to find the best way to address the two problems together. The results showed that the r-(k,d) class estimator is the best esti

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Oct 01 2016
Journal Name
2016 6th International Conference On Information Communication And Management (icicm)
Enhancing case-based reasoning retrieval using classification based on associations
...Show More Authors

View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Mon Oct 10 2016
Journal Name
Iraqi Journal Of Science
Satellite image classification using KL-transformation and modified vector quantization
...Show More Authors

In this work, satellite images classification for Al Chabaish marshes and the area surrounding district in (Dhi Qar) province for years 1990,2000 and 2015 using two software programming (MATLAB 7.11 and ERDAS imagine 2014) is presented. Proposed supervised classification method (Modified Vector Quantization) using MATLAB software and supervised classification method (Maximum likelihood Classifier) using ERDAS imagine have been used, in order to get most accurate results and compare these methods. The changes that taken place in year 2000 comparing with 1990 and in year 2015 comparing with 2000 are calculated. The results from classification indicated that water and vegetation are decreased, while barren land, alluvial soil and shallow water

... Show More
Publication Date
Thu Aug 31 2023
Journal Name
Iraqi Geological Journal
Mineral Inversion Approach to Improve Ahdeb Oil Field's Mineral Classification
...Show More Authors

Knowledge of the mineralogical composition of a petroleum reservoir's formation is crucial for the petrophysical evaluation of the reservoir. The Mishrif formation, which is prevalent in the Middle East, is renowned for its mineralogical complexity. Multi-mineral inversion, which combines multiple logs and inversions for multiple minerals at once, can make it easier to figure out what minerals are in the Mishrif Formation. This method could help identify minerals better and give more information about the minerals that make up the formation. In this study, an error model is used to find a link between the measurements of the tools and the petrophysical parameters. An error minimization procedure is subsequently applied to determine

... Show More
View Publication
Scopus (4)
Scopus Crossref
Publication Date
Thu May 05 2022
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Classification SINGLE-LEAD ECG by using conventional neural network algorithm
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Fri Apr 01 2016
Journal Name
Journal Of Engineering
Satellite Images Classification in Rural Areas Based on Fractal Dimension
...Show More Authors

Fractal geometry is receiving increase attention as a quantitative and qualitative model for natural phenomena description, which can establish an active classification technique when applied on satellite images. In this paper, a satellite image is used which was taken by Quick Bird that contains different visible classes. After pre-processing, this image passes through two stages: segmentation and classification. The segmentation carried out by hybrid two methods used to produce effective results; the two methods are Quadtree method that operated inside Horizontal-Vertical method. The hybrid method is segmented the image into two rectangular blocks, either horizontally or vertically depending on spectral uniformity crit

... Show More
View Publication Preview PDF
Publication Date
Wed Jan 01 2025
Journal Name
Fusion: Practice And Applications
Enhanced EEG Signal Classification Using Machine Learning and Optimization Algorithm
...Show More Authors

This paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance

... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Fri Dec 15 2017
Journal Name
Journal Of Baghdad College Of Dentistry
The Effect of Different Pouring Interval of Conventional Impression on the Marginal Accuracy of Full Contour Zirconia Crowns in Comparison with Digital Impression (An in vitro study)
...Show More Authors

Background: The success and maintenance of indirect dental restorations is closely related to the marginal accuracy, which is affected by many factors like preparation design, using of different fabrication techniques, and the time of taking final impression and pouring it. The purpose of this in vitro study was to evaluate the effect of different pouring time of conventional impression on the vertical marginal gap of full contour zirconia crowns in comparison with digital impression technique. Materials and Methods: Forty sound recently extracted human permanent maxillary first premolar teeth of comparable size and shape were collected. Standardized preparation of all teeth samples were carried out to receive full contour zirconia crown re

... Show More
View Publication Preview PDF
Crossref (1)
Crossref