Traumatic spinal cord injury is a serious neurological disorder. Patients experience a plethora of symptoms that can be attributed to the nerve fiber tracts that are compromised. This includes limb weakness, sensory impairment, and truncal instability, as well as a variety of autonomic abnormalities. This article will discuss how machine learning classification can be used to characterize the initial impairment and subsequent recovery of electromyography signals in an non-human primate model of traumatic spinal cord injury. The ultimate objective is to identify potential treatments for traumatic spinal cord injury. This work focuses specifically on finding a suitable classifier that differentiates between two distinct experimental stages (pre-and post-lesion) using electromyography signals. Eight time-domain features were extracted from the collected electromyography data. To overcome the imbalanced dataset issue, synthetic minority oversampling technique was applied. Different ML classification techniques were applied including multilayer perceptron, support vector machine, K-nearest neighbors, and radial basis function network; then their performances were compared. A confusion matrix and five other statistical metrics (sensitivity, specificity, precision, accuracy, and F-measure) were used to evaluate the performance of the generated classifiers. The results showed that the best classifier for the left- and right-side data is the multilayer perceptron with a total F-measure of 79.5% and 86.0% for the left and right sides, respectively. This work will help to build a reliable classifier that can differentiate between these two phases by utilizing some extracted time-domain electromyography features.
The research deals with Iraq's position of the Lebanese civil war and the Efforts made by Iraq in order to stop the bleeding of this war, the research also deals with the nature of regime in Lebanon and the developments that preceded the war and the positions of the internal and external competing forces, as weu as handling the Iraqi Syrian disagreement and it's impaet on the situation of Lebanon and the war developments.
The research focused on the Iraq's position towards the externd proposed solutions to solve the Lebanese civil war.
The growing interest in the use of chaotic techniques for enabling secure communication in recent years has been motivated by the emergence of a number of wireless services which require the service provider to provide low bit error rates (BER) along with information security. This paper investigates the feasibility of using chaotic communications over Multiple-Input-Multiple-Output (MIMO) channels. While the use of Chaotic maps can enhance security, it is seen that the overall BER performance gets degraded when compared to conventional communication schemes. In order to overcome this limitation, we have proposed the use of a combination of Chaotic modulation and Alamouti Space Time Block Code. The performance of Chaos Shift Keying (CSK) wi
... Show MoreBlockchain represents a new promising technology with a huge economic impact resulting from its uses in various fields such as digital currency and banking; malware represents a serious threat to users, and there are many differences in the effectiveness of antivirus software used to deal with the problem of malware. This chapter has developed a coefficient for measuring the effectiveness of antivirus software. This chapter evaluates the effectiveness of antivirus software by conducting tests on a group of protection programs using a folder containing an amount of data. These programs are applied to combat viruses contained in this folder. The study revealed that the effectiveness of antivirus software is as follows: AVG scored 0%,
... Show MoreA hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different m
... Show MoreThere has been a growing interest in the use of chaotic techniques for enabling secure communication in recent years. This need has been motivated by the emergence of a number of wireless services which require the channel to provide very low bit error rates (BER) along with information security. This paper investigates the feasibility of using chaotic communications over Multiple-Input Multiple-Output (MIMO) channels by combining chaos modulation with a suitable Space Time Block Code (STBC). It is well known that the use of Chaotic Modulation techniques can enhance communication security. However, the performance of systems using Chaos modulation has been observed to be inferior in BER performance as compared to conventional communication
... Show MoreLuminescent solar concentrator (LSC) are used to enhance photoresponsivity of solar cell. The Quantumdots luminescent solar concentrator (QDLSC) consists of CdSe/CdS core/shell nanoparticles embedded in polyacrylamide polymer matrix positioned on the top surface of the silicon solar cell. This procedure improves the conversion efficiency of the bare silicon solar cell. The conversion efficiency of the solar cell has increased from 7.3% to 10.3%. this improvement is referred to the widening of the response spectral region window of the a- Si. Solar cell.