Preferred Language
Articles
/
XhfW0IwBVTCNdQwC_Qhr
Comparison study of classification methods of intramuscular electromyography data for non-human primate model of traumatic spinal cord injury
...Show More Authors

Traumatic spinal cord injury is a serious neurological disorder. Patients experience a plethora of symptoms that can be attributed to the nerve fiber tracts that are compromised. This includes limb weakness, sensory impairment, and truncal instability, as well as a variety of autonomic abnormalities. This article will discuss how machine learning classification can be used to characterize the initial impairment and subsequent recovery of electromyography signals in an non-human primate model of traumatic spinal cord injury. The ultimate objective is to identify potential treatments for traumatic spinal cord injury. This work focuses specifically on finding a suitable classifier that differentiates between two distinct experimental stages (pre-and post-lesion) using electromyography signals. Eight time-domain features were extracted from the collected electromyography data. To overcome the imbalanced dataset issue, synthetic minority oversampling technique was applied. Different ML classification techniques were applied including multilayer perceptron, support vector machine, K-nearest neighbors, and radial basis function network; then their performances were compared. A confusion matrix and five other statistical metrics (sensitivity, specificity, precision, accuracy, and F-measure) were used to evaluate the performance of the generated classifiers. The results showed that the best classifier for the left- and right-side data is the multilayer perceptron with a total F-measure of 79.5% and 86.0% for the left and right sides, respectively. This work will help to build a reliable classifier that can differentiate between these two phases by utilizing some extracted time-domain electromyography features.

Scopus Clarivate Crossref
View Publication
Publication Date
Mon Mar 15 2021
Journal Name
Iraqi National Journal Of Nursing Specialties
Screening for Attention Deficit Hyperactivity Disorder at Elementary Schools in Baghdad City
...Show More Authors

Objective(s): To determine the prevalence of ADHD among elementary school pupils; identify the association between pupil's level of ADHD and age, etc., and investigate the differences in pupils ADHD based on gender, and grade.

Methodology: A descriptive study was conducted on elementary school pupils. The study started from the period of 16th of September 2019 to the 1st of October 2020. A cluster sample of 800 pupils was selected. The questionnaire was constructed and developed and include two parts: the first part includes the pupil's general information and the second part includes scale of ADHD prevalence.

Results: The results of the present study indicated that 38(4.

... Show More
View Publication Preview PDF
Publication Date
Mon Feb 18 2019
Journal Name
Iraqi Journal Of Physics
Automated method for buried object detecting using ground penetrating radar (GPR) survey
...Show More Authors

  Ground Penetrating Radar (GPR) is a nondestructive geophysical technique that uses electromagnetic waves to evaluate subsurface information. A GPR unit emits a short pulse of electromagnetic energy and is able to determine the presence or absence of a target by examining the reflected energy from that pulse. GPR is geophysical approach that use band of the radio spectrum. In this research the function of GPR has been summarized as survey different buried objects such as (Iron, Plastic(PVC), Aluminum) in specified depth about (0.5m) using antenna of 250 MHZ, the response of the each object can be recognized as its shapes, this recognition have been performed using image processi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Oct 05 2025
Journal Name
Mesopotamian Journal Of Computer Science
DGEN: A Dynamic Generative Encryption Network for Adaptive and Secure Image Processing
...Show More Authors

Cyber-attacks keep growing. Because of that, we need stronger ways to protect pictures. This paper talks about DGEN, a Dynamic Generative Encryption Network. It mixes Generative Adversarial Networks with a key system that can change with context. The method may potentially mean it can adjust itself when new threats appear, instead of a fixed lock like AES. It tries to block brute‑force, statistical tricks, or quantum attacks. The design adds randomness, uses learning, and makes keys that depend on each image. That should give very good security, some flexibility, and keep compute cost low. Tests still ran on several public image sets. Results show DGEN beats AES, chaos tricks, and other GAN ideas. Entropy reached 7.99 bits per pix

... Show More
View Publication
Scopus Crossref
Publication Date
Sat May 03 2025
Journal Name
Aip Conference Proceedings
Computational applications on the result involution graph for the held group He
...Show More Authors

In this work, a deep computational study has been conducted to assign several qualities for the graph ⁠. Furthermore, determine the amount of the dihedral subgroups in the Held simple group He through utilizing the attributes of gamma.

View Publication
Scopus Crossref
Publication Date
Wed Dec 30 2020
Journal Name
Journal Of Planner And Development
"2030 City Tour". New paradigm for intervention in the XXI century cities
...Show More Authors

THE ACTUAL SOCIETY MODEL

Our society model has been showing signs of exhaustion since the end of the XX century. The recent appearance of the Covid-19 virus is another consequence of humanity's distance from Nature and the environment it inhabits. Also, climate change, environmental deterioration, loss of biodiversity, overexploitation of natural resources, and social inequality are some of the consequences derived from this separation between society and Nature. We must change our operating habits. Inevitably from a society based on the market, hyper consumption, fossil energy and individual enrichment at all costs, we will have to change to another

... Show More
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
International Journal Of Computational Intelligence Systems
Evolutionary Feature Optimization for Plant Leaf Disease Detection by Deep Neural Networks
...Show More Authors

View Publication
Scopus (55)
Crossref (52)
Scopus Clarivate Crossref
Publication Date
Thu Aug 31 2023
Journal Name
Journal Européen Des Systèmes Automatisés​
An IoT and Machine Learning-Based Predictive Maintenance System for Electrical Motors
...Show More Authors

The rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com

... Show More
View Publication
Scopus (36)
Crossref (25)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Computers, Materials & Continua
An Optimal Method for Supply Chain Logistics Management Based on Neural Network
...Show More Authors

View Publication
Scopus (5)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Water, Air And Soil Pollution
Cladophora Algae Modified with CuO Nanoparticles for Tetracycline Removal from Aqueous Solutions
...Show More Authors

Modified algae with nano copper oxide (CuO) were used as adsorption media to remove tetracycline (TEC) from aqueous solutions. Functional groups, morphology, structure, and percentages of surfactants before and after adsorption were characterised through Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Several variables, including pH, connection time, dosage, initial concentrations, and temperature, were controlled to obtain the optimum condition. Thermodynamic studies, adsorption isotherm, and kinetics models were examined to describe and recognise the type of interactions involved. Resultantly, the best operation conditions were at pH 7, contact time

... Show More
Scopus (32)
Crossref (31)
Scopus Clarivate Crossref
Publication Date
Mon Mar 15 2021
Journal Name
Applied Sciences
Leading Edge Blowing to Mimic and Enhance the Serration Effects for Aerofoil
...Show More Authors

Leading edge serration is now a well-established and effective passive control device for the reduction of turbulence–leading edge interaction noise, and for the suppression of boundary layer separation at high angle of attack. It is envisaged that leading edge blowing could produce the same mechanisms as those produced by a serrated leading edge to enhance the aeroacoustics and aerodynamic performances of aerofoil. Aeroacoustically, injection of mass airflow from the leading edge (against the incoming turbulent flow) can be an effective mechanism to decrease the turbulence intensity, and/or alter the stagnation point. According to classical theory on the aerofoil leading edge noise, there is a potential for the leading edge blowi

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (7)
Scopus Clarivate Crossref