Traumatic spinal cord injury is a serious neurological disorder. Patients experience a plethora of symptoms that can be attributed to the nerve fiber tracts that are compromised. This includes limb weakness, sensory impairment, and truncal instability, as well as a variety of autonomic abnormalities. This article will discuss how machine learning classification can be used to characterize the initial impairment and subsequent recovery of electromyography signals in an non-human primate model of traumatic spinal cord injury. The ultimate objective is to identify potential treatments for traumatic spinal cord injury. This work focuses specifically on finding a suitable classifier that differentiates between two distinct experimental stages (pre-and post-lesion) using electromyography signals. Eight time-domain features were extracted from the collected electromyography data. To overcome the imbalanced dataset issue, synthetic minority oversampling technique was applied. Different ML classification techniques were applied including multilayer perceptron, support vector machine, K-nearest neighbors, and radial basis function network; then their performances were compared. A confusion matrix and five other statistical metrics (sensitivity, specificity, precision, accuracy, and F-measure) were used to evaluate the performance of the generated classifiers. The results showed that the best classifier for the left- and right-side data is the multilayer perceptron with a total F-measure of 79.5% and 86.0% for the left and right sides, respectively. This work will help to build a reliable classifier that can differentiate between these two phases by utilizing some extracted time-domain electromyography features.
This investigation was conducted to recognize the structure for (RHETI version 2.5 1999) by using exploratory and confirmatory factor analysis. Sample of (620) student of Al-Mustansrya University were administered the (RHETI).
The data of their responses was analyzed by using (PAF) and oblique rotating .
The findings explored (9) factors as one factor for each type and (184) items were loaded by the factors: (60) item for feeling center, (61) items for instinctive center and (63) items for thinking center.
Results of confirmatory factorial analysis supported a model designed by the researcher depended upon a theoretical views of Riso and Hudson
... Show MoreThis research takes up address the practical side by taking case studies for construction projects that include the various Iraqi governorates, as it includes conducting a field survey to identify the impact of parametric costs on construction projects and compare them with what was reached during the analysis and the extent of their validity and accuracy, as well as adopting the approach of personal interviews to know the reality of the state of construction projects. The results showed, after comparing field data and its measurement in construction projects for the sectors (public and private), the correlation between the expected and actual cost change was (97.8%), and this means that the data can be adopted in the re
... Show MoreComputer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes
... Show MoreSoil is the cardinal resource for agricultural crops. Healthy soil will produce healthy plants. Since healthy soil is the important goal for the farmers, they need to select the best tillage system to achieve that goal. There are two main types of tillage systems. Conservation tillage (no-tillage farming) uses agricultural machinery that performs a double function; tillage and seed farming simultaneously. In contrast, conventional tillage farming uses multiple agricultural machines to till and seed the soil. The farmers in the northern governorates of Iraq have used the conservation farming system for a long time. However, the farmers who live in the middle and southern governorates in Iraq use conventional tillage farming. Because most of
... Show More<p>Energy and memory limitations are considerable constraints of sensor nodes in wireless sensor networks (WSNs). The limited energy supplied to network nodes causes WSNs to face crucial functional limitations. Therefore, the problem of limited energy resource on sensor nodes can only be addressed by using them efficiently. In this research work, an energy-balancing routing scheme for in-network data aggregation is presented. This scheme is referred to as Energy-aware and load-Balancing Routing scheme for Data Aggregation (hereinafter referred to as EBR-DA). The EBRDA aims to provide an energy efficient multiple-hop routing to the destination on the basis of the quality of the links between the source and destination. In
... Show MoreWildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (Mob
... Show MoreThe research aimed to identify smart management capabilities of secondary school principals in education directorates in Baghdad according to the administrative intelligent and leadership competencies. The study used incentives as a descriptive method, by analyzing five main areas of smart management: strategic planning, self-awareness, skills, organization and culture. A purposive sample consisting of 102 secondary school principals from education directorates (Rusafa1) and (Karkh2), was taken to fill questionnaire the latter representing a complete sample of the target population. validated has been built an advanced measurement tool composed of 56 items across the five domains of strategic planning (21%), self-awareness (21%), culture (2
... Show MoreThe study addressed the change in the nature of the land cover of the Al-Jadriya Twist area for the period from 1976-2024 with an area of (140 km2)and for a period of (48 years) based on satellite images and their analysis using geographic information systems. The main classifications of the area were reached (water cover, residential areas, vegetation cover, in addition to empty, unused areas). The extracted data indicate a decrease in the water cover and the change rate reached (-14.29) and the residential areas increased with a change rate of (28.26), while the vegetation cover rate was recorded from (45 km2) to (66 km2) and the empty areas had a change rate of (-78.57).