Traumatic spinal cord injury is a serious neurological disorder. Patients experience a plethora of symptoms that can be attributed to the nerve fiber tracts that are compromised. This includes limb weakness, sensory impairment, and truncal instability, as well as a variety of autonomic abnormalities. This article will discuss how machine learning classification can be used to characterize the initial impairment and subsequent recovery of electromyography signals in an non-human primate model of traumatic spinal cord injury. The ultimate objective is to identify potential treatments for traumatic spinal cord injury. This work focuses specifically on finding a suitable classifier that differentiates between two distinct experimental stages (pre-and post-lesion) using electromyography signals. Eight time-domain features were extracted from the collected electromyography data. To overcome the imbalanced dataset issue, synthetic minority oversampling technique was applied. Different ML classification techniques were applied including multilayer perceptron, support vector machine, K-nearest neighbors, and radial basis function network; then their performances were compared. A confusion matrix and five other statistical metrics (sensitivity, specificity, precision, accuracy, and F-measure) were used to evaluate the performance of the generated classifiers. The results showed that the best classifier for the left- and right-side data is the multilayer perceptron with a total F-measure of 79.5% and 86.0% for the left and right sides, respectively. This work will help to build a reliable classifier that can differentiate between these two phases by utilizing some extracted time-domain electromyography features.
For many years, the construction industry damages have been overlooked such as unreasonable consumption of resources in addition to producing a lot of construction waste but with global awareness growth towards the sustainable development issues, the sustainable construction practices have been adopted, taking into account the environment and human safety. The research aims to propose a management system for construction practices which could be adopted during constructing different types of sustainable buildings besides formulating flowcharts which clarify the required whole phases of sustainable buildings life cycle. The research includes two parts: theoretical part which generally ,handles the sustainability concepts at construction i
... Show MoreThe work reported in this study focusing on the abrasive wear behavior for three types of pipes used in oil industries (Carbone steel, Alloy steel and Stainless steel) using a wear apparatus for dry and wet tests, manufactured according to ASTM G65. Silica sand with
hardness (1000-1100) HV was used as abrasive material. The abrasive wear of these pipes has been measured experimentally by measuring the wear rate for each case under different sliding speeds, applied loads, and sand conditions (dry or wet). All tests have been conducted using sand of particle size (200-425) µm, ambient temperature of 34.5 °C and humidity 22% (Lab conditions).
The results show that the material loss due to abrasive wear increased monotonically with
The research aimed: 1. Definition of family climate for the university students. 2. Definition of statistical significance of differences in family climate variable depending on the sex (males - females) and specialization (Scientific - humanity). 3. Definition of academic adjustment for university students. 4. Definition of correlation between climate and academic adjustment. The research sample formed of (300) male and female students by (150) male of scientific and humanitarian specialization and (150) female of scientific and humanitarian specialization randomly selected from the research community. To achieve the objectives of the research the researcher prepared a tool to measure family climate. And adopted the measure (Azzam 2010)
... Show MoreRecently emerging pandemic SARS CoV-2 conquered our world since December 2019. Continuous efforts have been done to find out effective immunization and precise treatment stetratigies A way from therapeutic options that were tried in SARS CoV-2, an increased attention is directed to predict natural products and mainly phytochemicals as collaborative measures for this crisis. In this review, most of the mentioned compounds specially flavonoids (biacalin, hesperidin, quercetin, luteolin,, and phenolic (resveratrol, curcumin, and theaflavin) exert their effect through interfering with the action of one or more of this proteins (spike protein, papain like protease, 3 chymotrypsin like cysteine protease, and RNA dependent RNA
... Show MoreLuminescent sensor membranes and sensor microplates are presented for continuous or high-throughput wide-range measurement of pH based on a europium probe.
The aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).
Abstract
Natural gas is characterized by features that made from it a fuel and a raw material for many industries. Deepening its position as a favorite fossil supplier between other types of fossil fuel is the efficiency, diversity of its uses, low costs and compatibility with the environment which leads to increasing of its uses then increased global demand. So, the natural gas must take its place as an important resource in Iraq and participate the oil in the economic development process of building and financing of the general budget.
Iraq is planning to continue of increasing the export capacity of raw oil to meet ambitious production targets emanating from the mai
... Show MoreMost Internet of Vehicles (IoV) applications are delay-sensitive and require resources for data storage and tasks processing, which is very difficult to afford by vehicles. Such tasks are often offloaded to more powerful entities, like cloud and fog servers. Fog computing is decentralized infrastructure located between data source and cloud, supplies several benefits that make it a non-frivolous extension of the cloud. The high volume data which is generated by vehicles’ sensors and also the limited computation capabilities of vehicles have imposed several challenges on VANETs systems. Therefore, VANETs is integrated with fog computing to form a paradigm namely Vehicular Fog Computing (VFC) which provide low-latency services to mo
... Show MoreThe inhibitive action of Phenyl Thiourea (PTU) on the corrosion of mild steel in strong Hydrochloric acid, HCl, has been investigated by weight loss and potentiostatic polarization. The effect of PTU concentration, HCl concentration, and temperature on corrosion rate of mild steel were verified using 2 levels factorial design and surface response analysis through weight loss approach, while the electrochemical measurements were used to study the behavior of mild steel in 5-7N HCl at temperatures 30, 40 and 50 °C, in absence and presence of PTU. It was verified that all variables and their interaction were statistically significant. The adsorption of (PTU) is found to obey the Langmuir adsorption isotherm. The effect of temperature on th
... Show More