Traumatic spinal cord injury is a serious neurological disorder. Patients experience a plethora of symptoms that can be attributed to the nerve fiber tracts that are compromised. This includes limb weakness, sensory impairment, and truncal instability, as well as a variety of autonomic abnormalities. This article will discuss how machine learning classification can be used to characterize the initial impairment and subsequent recovery of electromyography signals in an non-human primate model of traumatic spinal cord injury. The ultimate objective is to identify potential treatments for traumatic spinal cord injury. This work focuses specifically on finding a suitable classifier that differentiates between two distinct experimental stages (pre-and post-lesion) using electromyography signals. Eight time-domain features were extracted from the collected electromyography data. To overcome the imbalanced dataset issue, synthetic minority oversampling technique was applied. Different ML classification techniques were applied including multilayer perceptron, support vector machine, K-nearest neighbors, and radial basis function network; then their performances were compared. A confusion matrix and five other statistical metrics (sensitivity, specificity, precision, accuracy, and F-measure) were used to evaluate the performance of the generated classifiers. The results showed that the best classifier for the left- and right-side data is the multilayer perceptron with a total F-measure of 79.5% and 86.0% for the left and right sides, respectively. This work will help to build a reliable classifier that can differentiate between these two phases by utilizing some extracted time-domain electromyography features.
Self-driving automobiles are prominent in science and technology, which affect social and economic development. Deep learning (DL) is the most common area of study in artificial intelligence (AI). In recent years, deep learning-based solutions have been presented in the field of self-driving cars and have achieved outstanding results. Different studies investigated a variety of significant technologies for autonomous vehicles, including car navigation systems, path planning, environmental perception, as well as car control. End-to-end learning control directly converts sensory data into control commands in autonomous driving. This research aims to identify the most accurate pre-trained Deep Neural Network (DNN) for predicting the steerin
... Show MoreSemantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s
... Show MoreIn this research, the use of natural materials like wool and cannabis as intermediate reinforcement for prosthetic limbs due to their comfort, affordability, and local availability was discussed. As part of this study on below-the-knee (BK) prosthetic sockets, two sets of samples were made using a vacuum method. These sets were made of natural fiber-reinforced polymer composites with lamination 80:20: group (Y) had 4 perlon, 1 wool 4 perlon, and group (G) had 4 perlon, 1 cannabis 4 perlon. The two groups were compared with a socket made of polypropylene. Tensile testing was used to determine the mechanical characteristics of the socket materials. The Y group has a yield stress of 17 MPs, an ultimate strength of 18.75 MPa, and an elastic
... Show MoreThe current research discusses "The Relationship critical factors for knowledge transfer in strategic success opportunities", the attention have been increased on knowledge transfer and strategic success subjects because on being one of the important and contemporary issues, which have a significant impact on the existence of organizations and its future. The research aims to identify the critical factors for knowledge transfer in private high education environment which enables (the college community surveyed) to achieve strategic success, also the research sought to answer questions related to research problem by testing a number of major and minor hypothes in correlation, in order to test the hypotheses I us
... Show MoreThis research is devoted to design and implement a Supervisory Control and Data Acquisition system (SCADA) for monitoring and controlling the corrosion of a carbon steel pipe buried in soil. A smart technique equipped with a microcontroller, a collection of sensors and a communication system was applied to monitor and control the operation of an ICCP process for a carbon steel pipe. The integration of the built hardware, LabVIEW graphical programming and PC interface produces an effective SCADA system for two types of control namely: a Proportional Integral Derivative (PID) that supports a closed loop, and a traditional open loop control. Through this work, under environmental temperature of 30°C, an evaluation and comparison were done for
... Show MoreBackground: The highest concentrations of
blood glucose during the day are usually found
postprandialy. Postprandial hyperglycemia (PPH)
is likely to promote or aggravate fasting
hyperglycemia. Evidence in recent years suggests
that PPH may play an important role in functional
& structural disturbances in different body organs
particularly the cardiovascular system.
Objective: To evaluate the effect of (PPH) as a
risk factor for coronary Heart disease in Type 2
diabetic patients.
Methods: Sixty-three type2 diabetic patients
were included in this study. All have controlled
fasting blood glucose, with HbA1c correlation.
They were all followed for five months period
(from May to October 2008)
Solar activity monitoring is important in our life because of its direct or indirect influence on our life, not only on ionospheric communications. To study solar activity, researchers need measuring and monitoring instruments, these instruments are mostly expensive and are not available in all universities. In this paper, a very low frequency radio receiver had been designed and implemented with components available in most markets to support the researchers, college students, and radio astronomy amateurs with a minimum input voltage less than 100µV, an output voltage less than 135 m V with no distortion and an overall gain of 34dB. A comparison had been done between two circuit structures using a workbench software program and experim
... Show MoreThe goal of current research to know the according of scientific values in the curriculum of chemistry sixth - grade science To achieve this goal wasa to build aalistaofa scientifica values toa be included in the curriculum of chemistry sixth - grade science after seeing a group of literature and previous studies, the list presented to a group of arbitrators and specialists in educational and psychological sciences and methods of teaching science, and curricula and teaching methods , Arbitrators and specialists have expressed their views and comments on the tool, and that the list was formed in final form (9) values Head of scientific includes ( 35) sub - value, then the researcher analyzed the chemistry curriculum for sixth grade Scient
... Show MoreKE Sharquie, SA Al-Mashhadani, AA Noaimi, AA Hasan, Journal of Cutaneous and Aesthetic Surgery, 2012 - Cited by 19