A substantial portion of today’s multimedia data exists in the form of unstructured text. However, the unstructured nature of text poses a significant task in meeting users’ information requirements. Text classification (TC) has been extensively employed in text mining to facilitate multimedia data processing. However, accurately categorizing texts becomes challenging due to the increasing presence of non-informative features within the corpus. Several reviews on TC, encompassing various feature selection (FS) approaches to eliminate non-informative features, have been previously published. However, these reviews do not adequately cover the recently explored approaches to TC problem-solving utilizing FS, such as optimization techniques. This study comprehensively analyzes different FS approaches based on optimization algorithms for TC. We begin by introducing the primary phases involved in implementing TC. Subsequently, we explore a wide range of FS approaches for categorizing text documents and attempt to organize the existing works into four fundamental approaches: filter, wrapper, hybrid, and embedded. Furthermore, we review four optimization algorithms utilized in solving text FS problems: swarm intelligence-based, evolutionary-based, physics-based, and human behavior-related algorithms. We discuss the advantages and disadvantages of state-of-the-art studies that employ optimization algorithms for text FS methods. Additionally, we consider several aspects of each proposed method and thoroughly discuss the challenges associated with datasets, FS approaches, optimization algorithms, machine learning classifiers, and evaluation criteria employed to assess new and existing techniques. Finally, by identifying research gaps and proposing future directions, our review provides valuable guidance to researchers in developing and situating further studies within the current body of literature.
Isatin is a heterocyclic molecule that belongs to one of the most important classes of organic compounds known as indolines. Isatin, isatin analogs, and their Schiff bases have recently attracted a lot of attention in medicinal chemistry. Isatin, itself, shows various biological activities such as antiviral, anticancer, antimicrobial, anti-inflammatory, analgesic, antioxidant, and anticonvulsant. Bis- Schiff bases containing isatin moiety have been known to possess a wide spectrum of pharmacological activities. This review offers up-to-date information on the most active isatin bis-Schiff bases, which would include anticancer, antimicrobial, antiviral, anticonvulsant, anti-inflammatory, and analgesic activities. These observations c
... Show MoreTo date, comprehensive reviews and discussions of the strengths and limitations of Remote Sensing (RS) standalone and combination approaches, and Deep Learning (DL)-based RS datasets in archaeology have been limited. The objective of this paper is, therefore, to review and critically discuss existing studies that have applied these advanced approaches in archaeology, with a specific focus on digital preservation and object detection. RS standalone approaches including range-based and image-based modelling (e.g., laser scanning and SfM photogrammetry) have several disadvantages in terms of spatial resolution, penetrations, textures, colours, and accuracy. These limitations have led some archaeological studies to fuse/integrate multip
... Show MoreOne of the most serious health disasters in recent memory is the COVID-19 epidemic. Several restriction rules have been forced to reduce the virus spreading. Masks that are properly fitted can help prevent the virus from spreading from the person wearing the mask to others. Masks alone will not protect against COVID-19; they must be used in conjunction with physical separation and avoidance of direct contact. The fast spread of this disease, as well as the growing usage of prevention methods, underscore the critical need for a shift in biometrics-based authentication schemes. Biometrics systems are affected differently depending on whether are used as one of the preventive techniques based on COVID-19 pandemic rules. This study provides an
... Show MoreIn this review of literature, the light will be concentrated on the role of stem cells as an approach in periodontal regeneration.
Document clustering is the process of organizing a particular electronic corpus of documents into subgroups of similar text features. Formerly, a number of conventional algorithms had been applied to perform document clustering. There are current endeavors to enhance clustering performance by employing evolutionary algorithms. Thus, such endeavors became an emerging topic gaining more attention in recent years. The aim of this paper is to present an up-to-date and self-contained review fully devoted to document clustering via evolutionary algorithms. It firstly provides a comprehensive inspection to the document clustering model revealing its various components with its related concepts. Then it shows and analyzes the principle research wor
... Show More