A single-blind randomized controlled clinical trial in patients with deep caries and symptoms of reversible pulpitis compared outcomes from a self-limiting excavation protocol using chemomechanical Carisolv gel/operating microscope (self-limiting) versus selective removal to leathery dentin using rotary burs (control). This was followed by pulp protection with mineral trioxide aggregate (MTA) and restoration with glass ionomer cement and resin composite, all in a single visit. The pulp sensibility and periapical health of teeth were assessed after 12 mo, in addition to the differences in bacterial tissue concentration postexcavation. Apical radiolucencies were assessed using cone beam computed tomography/periapical radiographs (CBCT/PAs) taken at baseline 0 mo (M0) and 12 mo (M12). In total, 101 restorations in 86 patients were placed and paired subsurface, and deep (postexcavation) dentin samples were obtained. DNA was extracted and bacteria-specific 16S ribosomal RNA gene quantitative polymerase chain reaction was performed. No significant difference was found in bacterial copy numbers normalized to mass of dentin (“bacterial tissue concentration”) between the self-limiting (96.3% reduction) and control protocols (97.1%, P = 0.33). The probability of 12-mo success was 4 times (odds ratio [OR] = 4.33; confidence interval [CI], 1.2–15.6; P = 0.025) higher in the self-limiting protocol compared to the control (conventional excavation technique), with pulp survival rates of 73.3% and 90%, respectively ( P = 0.049). Molars had a 4 times higher probability of success compared to premolars (OR, 4.17; CI, 1.17–14.9; P = 0.028), and symptom severity did not statistically predict outcome (OR, 0.41; CI, 0.12–13.9, P = 0.153). CBCT detected significantly more periapical (PA) lesions than PA radiographs at the baseline visit ( P < 0.001). In conclusion, the self-limiting caries excavation protocol under magnification increased pulp survival rate compared to rotary bur excavation ( ClinicalTrials.gov NCT03071588).
Background: Sialosis described as a specific consequence of diabetes. In diabetic sialosis, the increased volume of the glands is due to the infiltration of adipose in the parenchyma. The B-scan ultrasonography is a generally accepted tool for determining parotid gland enlargement. Oral health is, to a greater extent, dependent on quality and quantity of saliva, both of which may be altered in diabetics. This study was established to detect the enlargement of parotid gland in diabetic patient and study the changes in physical properties of saliva and its relation with the salivary gland enlargement. Subjects, Materials and Methods: A cross-sectional study with highly specified criteria with ages ranged (20-65) years, male and female subject
... Show MoreObjective: Rheumatoid arthritis (RA) patients have increased morbidity and mortality from premature cardiovascular (CV) disease (CVD). Framingham risk score (FRS) is a simplified coronary prediction tool developed to enable clinicians to assess the risk of a cardiovascular event and to identify candidate patients for risk factors modifications worldwide. The predictive ability of the FRS varies between populations, ethnic groups, and socio-economic status. The aim of this study is to find if there is any correlation between the Framingham risk score and the inflammatory and biochemical parameters used to measure disease activity and functional ability in Iraqi patients with active RA.
The clinical spectrum of cutaneous leishmaniasis (CL), an intracellular parasitic pathogen, ranges from a single sore healing to chronic crusty lesions with a manifestation of treatment resistance. The complicated interaction between Leishmania bodies and the early immune response, including innate and adaptive mechanisms, determines the evolution of nodules. This study examined the levels of the chemoattractant interleukin 8 (IL-8), pro-inflammatory nitric oxide (NO), and immunoregulatory macrophage inhibitory factor (MIF) in the serum of subjects recently diagnosed with cutaneous leishmaniasis, in parallel with patients being monitored during consecutive sodium stibogluconate (Pentostam) treatment. A total of 161 serum samples of newly di
... Show MoreThe Electro-Fenton oxidation process is one of the essential advanced electrochemical oxidation processes used to treat Phenol and its derivatives in wastewater. The Electro-Fenton oxidation process was carried out at an ambient temperature at different current density (2, 4, 6, 8 mA/cm2) for up to 6 h. Sodium Sulfate at a concentration of 0.05M was used as a supporting electrolyte, and 0.4 mM of Ferrous ion concentration (Fe2+) was used as a catalyst. The electrolyte cell consists of graphite modified by an electrodepositing layer of PbO2 on its surface as anode and carbon fiber modified with Graphene as a cathode. The results indicated that Phenol concentration decreases with an increase in current dens
... Show MoreElectrocoagulation process was employed for the treatment of river water flows in Iraq. In this study, a batch Electrocoagulation process was used to treat river water taken from Al - Qadisiyah water treatment plant. electrolysis time, voltage and inter-electrode spacing were the most important parameters to study . A statistical model was developed using the RSM model. The optimum condition after studying the parameter effect the process was 1 cm separating, 30 volts . The RSM model shows the ideal condition of removal for both the TSS and turbidity at 1 cm, 20 volts and 55 min.
Removing Congo red (CR) is critical in wastewater treatment. We introduce a combination of electrocoagulation (EC) and electro-oxidation (EO) to address the elimination of CR. We also discuss the deposition of triple oxides (Cu–Mn–Ni) simultaneously on both anodic and cathodic graphite electrodes at constant current density. These electrodes efficiently worked as anodes in the EC-EO system. The EC-CO combination eliminated around 98 % of the CR dye and about 95 % of the Chemical Oxygen demand (COD), and similar results were obtained with the absence of NaCl. Thus, EC-EO is a promising technique to remove CR in an environmentally friendly pathway.
Silver nanoparticles synthesized by different species