In recent years, data centre (DC) networks have improved their rapid exchanging abilities. Software-defined networking (SDN) is presented to alternate the impression of conventional networks by segregating the control plane from the SDN data plane. The SDN presented overcomes the limitations of traditional DC networks caused by the rapidly incrementing amounts of apps, websites, data storage needs, etc. Software-defined networking data centres (SDN-DC), based on the open-flow (OF) protocol, are used to achieve superior behaviour for executing traffic load-balancing (LB) jobs. The LB function divides the traffic-flow demands between the end devices to avoid links congestion. In short, SDN is proposed to manage more operative configurations, efficient enhancements and further elasticity to handle massive network schemes. In this paper the opendaylight controller (ODL-CO) with new version OF 1.4 protocol and the ant colony optimization algorithm is proposed to test the performance of the LB function using IPv6 in a SDN-DC network by studying the throughput, data transfer, bandwidth and average delay performance of the networking parameters before and after use of the LB algorithm. As a result, after applying the LB, the throughput, data transfer and bandwidth performance increased, while the average delay decreased.
Precise forecasting of pore pressures is crucial for efficiently planning and drilling oil and gas wells. It reduces expenses and saves time while preventing drilling complications. Since direct measurement of pore pressure in wellbores is costly and time-intensive, the ability to estimate it using empirical or machine learning models is beneficial. The present study aims to predict pore pressure using artificial neural network. The building and testing of artificial neural network are based on the data from five oil fields and several formations. The artificial neural network model is built using a measured dataset consisting of 77 data points of Pore pressure obtained from the modular formation dynamics tester. The input variables
... Show MoreQuantitative real-time Polymerase Chain Reaction (RT-qPCR) has become a valuable molecular technique in biomedical research. The selection of suitable endogenous reference genes is necessary for normalization of target gene expression in RT-qPCR experiments. The aim of this study was to determine the suitability of each 18S rRNA and ACTB as internal control genes for normalization of RT-qPCR data in some human cell lines transfected with small interfering RNA (siRNA). Four cancer cell lines including MCF-7, T47D, MDA-MB-231 and Hela cells along with HEK293 representing an embryonic cell line were depleted of E2F6 using siRNA specific for E2F6 compared to negative control cells, which were transfected with siRNA not specific for any gene. Us
... Show MoreIn recent years, the Global Navigation Satellite Services (GNSS) technology has been frequently employed for monitoring the Earth crust deformation and movement. Such applications necessitate high positional accuracy that can be achieved through processing GPS/GNSS data with scientific software such as BERENSE, GAMIT, and GIPSY-OSIS. Nevertheless, these scientific softwares are sophisticated and have not been published as free open source software. Therefore, this study has been conducted to evaluate an alternative solution, GNSS online processing services, which may obtain this privilege freely. In this study, eight years of GNSS raw data for TEHN station, which located in Iran, have been downloaded from UNAVCO website
... Show MoreThe physical and elastic characteristics of rocks determine rock strengths in general. Rock strength is frequently assessed using porosity well logs such as neutron and sonic logs. The essential criteria for estimating rock mechanic parameters in petroleum engineering research are uniaxial compressive strength and elastic modulus. Indirect estimation using well-log data is necessary to measure these variables. This study attempts to create a single regression model that can accurately forecast rock mechanic characteristics for the Harth Carbonate Formation in the Fauqi oil field. According to the findings of this study, petrophysical parameters are reliable indexes for determining rock mechanical properties having good performance p
... Show MoreUnconfined Compressive Strength is considered the most important parameter of rock strength properties affecting the rock failure criteria. Various research have developed rock strength for specific lithology to estimate high-accuracy value without a core. Previous analyses did not account for the formation's numerous lithologies and interbedded layers. The main aim of the present study is to select the suitable correlation to predict the UCS for hole depth of formation without separating the lithology. Furthermore, the second aim is to detect an adequate input parameter among set wireline to determine the UCS by using data of three wells along ten formations (Tanuma, Khasib, Mishrif, Rumaila, Ahmady, Maudud, Nahr Um
... Show Morewith an organized propaganda campaign. This military campaign was helped to formulate its speech by many institutions, research centers, and knowledge and intelligence circles in order to mobilize public opinion gain supporters and face the opponents by different means depending on a variety of styles to achieve its required effects.
After the US occupation of Iraq, US media fighters sought to influence the Iraqi public opinion and making them convinced them of the important presence of US military forces in Iraq which necessitated finding its justification through the use of persuasive techniques in its intensive propaganda campaigns.
This research discusses the most important
The objective of this study is to apply Artificial Neural Network for heat transfer analysis of shell-and-tube heat exchangers widely used in power plants and refineries. Practical data was obtained by using industrial heat exchanger operating in power generation department of Dura refinery. The commonly used Back Propagation (BP) algorithm was used to train and test networks by divided the data to three samples (training, validation and testing data) to give more approach data with actual case. Inputs of the neural network include inlet water temperature, inlet air temperature and mass flow rate of air. Two outputs (exit water temperature to cooling tower and exit air temperature to second stage of air compressor) were taken in ANN.
... Show MoreGenerally, statistical methods are used in various fields of science, especially in the research field, in which Statistical analysis is carried out by adopting several techniques, according to the nature of the study and its objectives. One of these techniques is building statistical models, which is done through regression models. This technique is considered one of the most important statistical methods for studying the relationship between a dependent variable, also called (the response variable) and the other variables, called covariate variables. This research describes the estimation of the partial linear regression model, as well as the estimation of the “missing at random” values (MAR). Regarding the
... Show MoreThe aim of the research is to use the data content analysis technique (DEA) in evaluating the efficiency of the performance of the eight branches of the General Tax Authority, located in Baghdad, represented by Karrada, Karkh parties, Karkh Center, Dora, Bayaa, Kadhimiya, New Baghdad, Rusafa according to the determination of the inputs represented by the number of non-accountable taxpayers and according to the categories professions and commercial business, deduction, transfer of property ownership, real estate and tenders, In addition to determining the outputs according to the checklist that contains nine dimensions to assess the efficiency of the performance of the investigated branches by investing their available resources T
... Show More