Amygdalin (d-Mandelonitrile 6-O-β-d-glucosido-β-d-glucoside) and its semi synthetic product is Laetrile ( also called vitamin B17): a natural cyanogenic glycoside occurring in the seeds of some edible plants, such as bitter almonds and peaches. Early in the 19th century, Amygdalin was first isolated in 1830 by two French chemists, Robiquet and Boutron-Charlard, as active components in various fruit pits and raw nuts. However, the systematized study of vitamin B17 started when chemist Bohn (1802) discovered that a hydrocyanic acid is released during distillation of the water from bitter almonds. The various pharmacological effects of Laetrile include antiatherogenic, activity in renal fibrosis, pulmonary fibrosis, immune regulation, anti-tumor, and anti-inflammatory activities. Despite numerous contributions to the cancer cell lines, the clinical evidence for the anti-cancer activity of Amygdalin is not fully confirmed. Moreover, high dose exposures to Amygdalin can produced cyanide toxicity. In the presented work, pharmacological activity, antitumor activity, and toxicity of Amygdalin have been summarized, focusing primarily on advanced research on Amygdalin and its anti-tumor effects, providing fresh perspectives for the creation of new anti-cancer drugs, the examination of natural antitumor mechanisms, and the search for new targets
The apoptotic activity of methionine γ- lyase from Pseudomonas putida on cancer cell lines was indicated by measuring the concentration of cytochrome c in the supernatants of cell lines. The result revealed high concentration of cytochrome c in the supernatants of cancer cell lines (RD, AMGM and AMN3) respectively while the concentration of anti-apoptotic protein (Bcl-2) was very low.
Data mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the most effective parameter, particularly when Age<49.5. Whereas Ki67 appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimu
... Show MoreBackground : Breast cancer is the most common cancer of
women. When breast cancer is detected and treated early,
the chances for survival are better. Surgery is the most
important treatment for non-metastatic breast cancer.
Al-Kindy Col Med J 2008 Vol.5(1) 40 Original Article
Objectives : The aim of this study is to review different
clinical presentation and to evaluate types of surgical
procedures and complications in treatment of nonmetastatic breast cancer.
Method : During the period from Jun 1998 to May 2005,
93 patients with non-metastatic breast cancer were
diagnosed and treated surgically in 2 hospitals in Baghdad (
Hammad Shihab military hospital and Al-Kindy teaching
hospital).
Results : Wo
Objectives: The study aimed to determine the effect of chemotherapy on the life style of patients who
receive chemotherapy.
Methodology: A descriptive study was conducted in Specialty Surgery Teaching Hospital, Al-yamok
Teaching Hospital, and Radiation and Nuclear Medicine Hospital in Baghdad for the period from May
2007 to October 2008. A purposive "non-probability" sample of (loo) patients with bladder cancer
who receive chemotherapy where concerned in this study.
A questionnaire fom was constnicted for the purpose of the study and it was comprised of
two parts. The questiormaire consists of (125) items. They include (1) demographic information (2)
assessment of lifestyle dimension. The content validity of the q
Human cytomegalovirus (HCMV) has a worldwide distribution and extremely common infections. The presence of HCMV genome and antigens has been detected in many kinds of human cancers especially breast cancer. In Iraq, the incidence of breast cancer generally exceeds any other type of malignancies among Iraqi population. The study was performed in the period between October 2016 and June 2017 in Central public health laboratory/Baghdad. It involve samples from 90 women including 60 breast cancer patients, 20 benign tumor patients, and 10 normal breast tissues. A blood sample was obtained from each woman included in this study. Anti-HCMV IgG antibody was presented in 9/10 (90%) of normal women, benign breast tumor patients 19/20 (95%) and malig
... Show MoreIdentifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration
... Show MoreCD63 is -one of the tetraspanin family proteins, which are regarded as: hallmark exosomal markers because it is absent from other types of vesicles. It is expressed in the cell membrane of cancer cells, and cytoplasm of stromal cells. Objective: To assess CD63 expression in gastric cancer (GC) patients, and detected if it could be used as a predictive marker. Furthermore, the current study aimed to find the correlation between CD63 expression and clinicopathological parameters as: gender, age, invasion depth, histopathological type, involvement of lymph nodes, grade and stages of GC (TNM). The current study is a retrospective study in the period time from (2018 to-2020); 50 randomly patients formalin-fixed paraffin embedded blocks (FFPE)
... Show MoreCervical Uterine Cancer is a disease that explains the vulnerability in which women are in terms of reproductive health with an impact on occupational health and public health, even when in Mexico the prevalence rate is lower than the other member countries of the OECD, its impact on Human Development and Local Development shows the importance that the disease have in communities more than in cities where prevention policies through check-ups and medical examinations seem to curb the trend, but show the lack of opportunities and capacities of health centers in rural areas. To establish the reliability, validity, and correlations between the variables reported in the literature with respect to their weighting in a public hospital. A
... Show MoreObjective This research investigates Breast Cancer real data for Iraqi women, these data are acquired manually from several Iraqi Hospitals of early detection for Breast Cancer. Data mining techniques are used to discover the hidden knowledge, unexpected patterns, and new rules from the dataset, which implies a large number of attributes. Methods Data mining techniques manipulate the redundant or simply irrelevant attributes to discover interesting patterns. However, the dataset is processed via Weka (The Waikato Environment for Knowledge Analysis) platform. The OneR technique is used as a machine learning classifier to evaluate the attribute worthy according to the class value. Results The evaluation is performed using
... Show More