Amygdalin (d-Mandelonitrile 6-O-β-d-glucosido-β-d-glucoside) and its semi synthetic product is Laetrile ( also called vitamin B17): a natural cyanogenic glycoside occurring in the seeds of some edible plants, such as bitter almonds and peaches. Early in the 19th century, Amygdalin was first isolated in 1830 by two French chemists, Robiquet and Boutron-Charlard, as active components in various fruit pits and raw nuts. However, the systematized study of vitamin B17 started when chemist Bohn (1802) discovered that a hydrocyanic acid is released during distillation of the water from bitter almonds. The various pharmacological effects of Laetrile include antiatherogenic, activity in renal fibrosis, pulmonary fibrosis, immune regulation, anti-tumor, and anti-inflammatory activities. Despite numerous contributions to the cancer cell lines, the clinical evidence for the anti-cancer activity of Amygdalin is not fully confirmed. Moreover, high dose exposures to Amygdalin can produced cyanide toxicity. In the presented work, pharmacological activity, antitumor activity, and toxicity of Amygdalin have been summarized, focusing primarily on advanced research on Amygdalin and its anti-tumor effects, providing fresh perspectives for the creation of new anti-cancer drugs, the examination of natural antitumor mechanisms, and the search for new targets
Crabs belong to the crustacean family (Decapods crustacean), and their shells contain natural ingredients from which the bioactive compounds are derived. It has been used as folklore medicine in cancer treatment. We investigate the possible anti-inflammatory and anti-oxidant effects for crab shells and whole crabs. Thirty-six rats (150–200 gm) from both sexes were used, divided into six groups, the anti-inflammatory and anti-oxidant activity measured using cotton pellet induce granuloma model. Detection of tumor necrosis factor alpha (TNF α), Interleukin 1 beta (IL-1β), superoxide (SOD), and malondialdehyde (MDA) levels using ELISA Kits. The data analysis by one-way ANOVA followed by the Tukey test. Values are significant at (p < 0.05).
... Show MoreTwo simple methods for the determination of eugenol were developed. The first depends on the oxidative coupling of eugenol with p-amino-N,N-dimethylaniline (PADA) in the presence of K3[Fe(CN)6]. A linear regression calibration plot for eugenol was constructed at 600 nm, within a concentration range of 0.25-2.50 μg.mL–1 and a correlation coefficient (r) value of 0.9988. The limits of detection (LOD) and quantitation (LOQ) were 0.086 and 0.284 μg.mL–1, respectively. The second method is based on the dispersive liquid-liquid microextraction of the derivatized oxidative coupling product of eugenol with PADA. Under the optimized extraction procedure, the extracted colored product was determined spectrophotometrically at 618 nm. A l
... Show Morel
Background: Inflammation of the brain parenchyma brought on by a virus is known as viral encephalitis. It coexists frequently with viral meningitis and is the most prevalent kind of encephalitis. Objectives: To throw light on viral encephalitis, its types, epidemiology, symptoms and complications. Results: Although it can affect people of all ages, viral infections are the most prevalent cause of viral encephalitis, which is typically seen in young children and old people. Arboviruses, rhabdoviruses, enteroviruses, herpesviruses, retroviruses, orthomyxoviruses, orthopneumoviruses, and coronaviruses are just a few of the viruses that have been known to cause encephalitis. Conclusion: As new viruses emerge, diagnostic techniques advan
... Show MoreDeep learning techniques are applied in many different industries for a variety of purposes. Deep learning-based item detection from aerial or terrestrial photographs has become a significant research area in recent years. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed. A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles and classification probabilities for an image. In layman's terms, it is a technique for instantly identifying and recognizing
... Show MoreMany water supplies are now contaminated by anthropogenic sources such as domestic and agricultural waste, as well as manufacturing activities, the public's concern about the environmental effects of wastewater contamination has grown. Several traditional wastewater treatment methods, such as chemical coagulation, adsorption, and activated sludge, have been used to eliminate pollution; however, there are several drawbacks, most notably high operating costs, because of its low operating and repair costs, the usage of aerobic waste water treatment as a reductive medium is gaining popularity. Furthermore, it is simple to produce and has a high efficacy and potential to degrade pollu
... Show MoreDeep learning techniques are used across a wide range of fields for several applications. In recent years, deep learning-based object detection from aerial or terrestrial photos has gained popularity as a study topic. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed. A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles andclassification probabilities for an image. In layman's terms, it is a technique for instantly identifying and rec
... Show MoreObjective: Assessment the psychological problems in patients with colorectal cancer, and to find out the
relationship between socio-demographic characteristics such as (age, sex, marital status, educational level,
and occupation) and psychological problems for those patients.
Methodology: A descriptive design is employed through the present study from 1
st July 2011 to 25
th December
2011 in order to study the quality of life in colorectal cancer patients with psychological problems.
A purposive (non probability) sample is selected for the study which includes (60) patients diagnosed with
colorectal cancer were treated in Mosul Oncology and Nuclear Medicine hospital or the patients who visited
the outpatient cl
Problem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a
... Show More