With the increasing intensity of the ecological and environmental problems and the scarcity of fresh water, this paper was introduced to investigate the ability to use treated wastewater as a cooling media via studying its behavior throughout a cooling tower. The simultaneous transfer of heat and mass from the treated wastewater to air over splash-fill packing arranged in a zigzag manner was studied. The characteristic of the cooling tower, the outlet water temperature, and the rejected heat were investigated as the water-to-air ratio and inlet water temperature were varied. The core results show that the cooling tower of the tower decreases with increasing water-to-air ratio, and increases with the raise of inlet water temperature. Moreover, relationships between cooling tower and water-to-air ratio were obtained for each. It was also observed that the outlet water temperature increases gradually with increasing water-to-air ratio and temperature, and the difference between the inlet and outlet temperature becomes larger by increasing the inlet temperature. The heat rejected value increases with increasing the air-flow rate, water flow rate, and temperature. This study revealed that cooling tower of splash fills arranged in a zigzag manner was higher compared to other types of packing. In the same time, the results for the treated wastewater and fresh water were very close that gives approximate behavior, and this can save a huge amount of fresh water for other humanistic utilization, along with taking benefit from the treatment process of wastewater instead of through it into the aquatic systems.
Destiny functional theory (DFT) calculations are undertaken in order to scrutinize the electrochemical and calcium (Ca) storage characteristics of a graphyne-like aluminum nitride monolayer (G-AlNyen) as an electrode material for Ca-ion batteries (CIBs). The results show that the change in internal energy as well as the cell voltage values for the CIB with the G-AlNyen anode are comparable to others with two-dimensional 2D nano-materials. It is shown that Ca is adsorbed primarily onto the center of a hexagonal and triangular ring of G-AlNyen with absorption energies of −2.06 and −0.42 eV. After increasing the concentration of Ca atoms on G-AlNyen, the adsorption energy as well as the cell voltage decreases. Lower values of 0.15–0.32 e
... Show MoreThe interests toward developing accurate automatic face emotion recognition methodologies are growing vastly, and it is still one of an ever growing research field in the region of computer vision, artificial intelligent and automation. However, there is a challenge to build an automated system which equals human ability to recognize facial emotion because of the lack of an effective facial feature descriptor and the difficulty of choosing proper classification method. In this paper, a geometric based feature vector has been proposed. For the classification purpose, three different types of classification methods are tested: statistical, artificial neural network (NN) and Support Vector Machine (SVM). A modified K-Means clustering algorithm
... Show MoreThe type of groundwater in the studied area is slightly brackish. In general, the dominant water type is calcium-sulfate. The reasons behind these different chemical groundwater types can be referred to the active ion exchange between the groundwater of the Dammam aquifer and Rus Formation. The groundwater of the Dammam unconfined aquifer is not suitable for human drinking in all the parameters properties. The groundwater class is fair in the Qasir Al-Ukhaider area, while the Shebcha area and Al-Salman area are poor class except the eastern part of Al-Salman area is very poor.
The objective of this paper is to study the stability of SIS epidemic model involving treatment. Two types of such eco-epidemiological models are introduced and analyzed. Boundedness of the system is established. The local and global dynamical behaviors are performed. The conditions of persistence of the models are derived.
The inverse kinematics of redundant manipulators has infinite solutions by using conventional methods, so that, this work presents applicability of intelligent tool (artificial neural network ANN) for finding one desired solution from these solutions. The inverse analysis and trajectory planning of a three link redundant planar robot have been studied in this work using a proposed dual neural networks model (DNNM), which shows a predictable time decreasing in the training session. The effect of the number of the training sets on the DNNM output and the number of NN layers have been studied. Several trajectories have been implemented using point to point trajectory planning algorithm with DNNM and the result shows good accuracy of the end
... Show More