Polarization manipulation elements operating at visible wavelengths represent a critical component of quantum communication sub-systems, equivalent to their telecom wavelength counterparts. The method proposed involves rotating the optic axis of the polarized input light by an angle of 45 degree, thereby converting the fundamental transverse electric (TE0) mode to the fundamental transverse magnetic (TM0) mode. This paper outlines an integrated gallium phosphide-waveguide polarization rotator, which relies on the rotation of a horizontal slot by 45 degree at a wavelength of 700 nm. This will ultimately lead to the conception of a mode hybridization phenomenon in the waveguide. The simulation results demonstrate a polarization conversion efficiency of 99.99% (99.98%) for TE0-to-TM0 (TM0-to-TE0) mode conversion, with an extinction ratio of 46.14 (39.62) dB and insertion loss below 1.6 dB at the specified wavelength. Additionally, the fabrication tolerance with regard to the width, height, and half-beat length of the proposed structure is investigated.
This research aims to find out the phonemic, dialect and semantic ailments that were interrogated by the book of the parsing of thirty surahs of the Noble Qur’an by Ibn Khalawiyeh, by examining some phonemic phenomena of Qur’anic expressions and their explanatory relationships that resulted in their occurrence, such as substitution and compression, as the sounds in a word are affected by one another, especially during performance and composition. This influence and influence is the tendency of the human being to the law of ease, facilitation, and the reduction of muscular effort in speech often, all for the purpose of obtaining phonemic harmony for the compound letters; To facilitate pronunciation; And get rid of the muscular effort
... Show MoreMultiplicative inverse in GF (2 m ) is a complex step in some important application such as Elliptic Curve Cryptography (ECC) and other applications. It operates by multiplying and squaring operation depending on the number of bits (m) in the field GF (2 m ). In this paper, a fast method is suggested to find inversion in GF (2 m ) using FPGA by reducing the number of multiplication operations in the Fermat's Theorem and transferring the squaring into a fast method to find exponentiation to (2 k ). In the proposed algorithm, the multiplicative inverse in GF(2 m ) is achieved by number of multiplications depending on log 2 (m) and each exponentiation is operates in a single clock cycle by generating a reduction matrix for high power of two ex
... Show MoreConstitute a planning problem on the basis of personal experience and self-governance in the service organizations away from quantitative scientific method in planning an anchor and a platform, who made a recent research study, analysis and interpretation through scientific methodology adopted which formed its contents, The research aims to identify the true reality of production planning in service organizations, specifically in the Baghdad Hotel as a society to look, in order to assess the best strategy through the standard cost of the strategies of tracking and settlement to cope with developments on services demand changes, Search results confirmed that the settlement rates of production strategy is the best strategy in accordance wi
... Show MoreThis study explores the role of nanomaterials in the performance of asphalt binders and mixtures. Two commonly available nanomaterials, i.e., nanosilica (NS) and nanoalumina (NA), were used at contents of 0%, 2%, 4%, 6%, and 8% by weight of asphalt binder. A set of experiments was carried out at the binder level to investigate properties such as penetration, softening point, aging-related mass loss, nanomaterial dispersion (storage stability), and workability (rotational viscosity). In addition, the suitability of NS and NS was also assessed through the testing of nanomodified asphalt mixtures, which focused on Marshall properties, the resilient modulus, moisture susceptibility, permanent deformation, and fatigue resistance. The findings in
... Show More