The research includes the synthesis and identification of the mixed ligands complexes of M(II) Ions in general composition [M(Lyn)2(phen)] Where L- lysine (C6H14N2O2) commonly abbreviated (LynH) as a primary ligand and 1,10-phenanthroline(C12H8N2) commonly abbreviated as "phen," as a secondary ligand . The ligands and the metal chlorides were brought in to reaction at room temperature in ethanol as solvent. The reaction required the following molar ratio [(1:1:2) (metal): phen:2 Lyn -] with M(II) ions, were M = Mn(II),Cu(II), Ni(II), Co(II), Fe(II) and Cd(II). Our research also includes studying the bio–activity of the some complexes prepared against pathogenic bacteria Escherichia coli(-),Staphylococcus(-) , Pseudomonas (-), Bacillus (-) and Staphylococcus S.P(+).
3-(4-hydroxyphenyl)-2-(3-(4-nitrobenzoyl) thioureido) propanoic acid (HNP) a new ligand was synthesized by reaction of Tyrosine with (4-Nitrobenzoyl isothiocyanate) by using acetone as a solvent. The prepared ligand (HNP) has been characterized by elemental analysis (CHNS), infrared (FT-IR), electronic spectral (Ultraviolet visible) and(1H,13C-Nuclear Magnetic Resonance) spectra. Some Divalent metal ion complexes of (HNP) were prepared and spectroscopic studies by Fourier transform infrared (FTIR), electronic spectral(UV-Vis), molar conductance, magnetic susceptibility and atomic absorption. The results measured showed the formula of six prepared complexes were [M (HNP)2] (M+2 = Manganese, Cobalt, Nickel, Znic, Cadmium and Mercury),from the
... Show MoreThis research involves the synthesis of some sulphanyl benzimidazole derivatives (Ia-c), which were prepared from reaction of 2-mercaptobenzimidazole substituted benzyl halide, and structures were identified by spectral methods[FTIR, 1H-NMR and 13C-NMR].These compounds were investigated as corrosion inhibitors for carbon steel in 1M H2SO4 solution using weight loss, potentiostatic polarization methods; obtained results showed that the sulphanyl benzimidazole derivatives retard both cathodic and anodic reactions in acidic media, by virtue of adsorption on the carbon steel surface. This adsorption obeyed Langmuir’s adsorption isotherm. The inhibition efficiency of (Ia-c) ranging between (65-92) %. By using different Ib derivative conc
... Show MoreAbstract
In this manuscript, a simple new method for the green synthesis of platinum nanoparticles (Pt NPs) utilizing F. carica Fig extract as reducing agent for antimicrobial activities was reported. Simultaneously, the microstructural and morphological features of the synthesized Pt NPs were thoroughly investigated. In particular, the attained Pt NPs exhibited spherical shape with diameter range of 5-30 nm and root mean square of 9.48 nm using Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM), respectively. Additionally, the final product (Pt NPs) was screened as antifungal and antibacterial agent against Candida and Aspergillus species as well as Gram-positive Staphyllococcus aureus and G
... Show MoreThe ligand Schiff base [(E)-3-(2-hydroxy-5-methylbenzylideneamino)- 1- phenyl-1H-pyrazol-5(4H) –one] with some metals ion as Mn(II); Co(II); Ni(II); Cu(II); Cd(II) and Hg(II) complexes have been preparation and characterized on the basic of mass spectrum for L, elemental analyses, FTIR, electronic spectral, magnetic susceptibility, molar conductivity measurement and functions thermodynamic data study (∆H°, ∆S° and ∆G°). Results of conductivity indicated that all complexes were non electrolytes. Spectroscopy and other analytical studies reveal distorted octahedral geometry for all complexes. The antibacterial activity of the ligand and preparers metal complexes was also studied against gram and negative bacteria.
The ligand Schiff base [(E)-3-(2-hydroxy-5-methylbenzylideneamino)- 1- phenyl-1H-pyrazol-5(4H) –one] with some metals ion as Mn(II); Co(II); Ni(II); Cu(II); Cd(II) and Hg(II) complexes have been preparation and characterized on the basic of mass spectrum for L, elemental analyses, FTIR, electronic spectral, magnetic susceptibility, molar conductivity measurement and functions thermodynamic data study (∆H°, ∆S° and ∆G°). Results of conductivity indicated that all complexes were non electrolytes. Spectroscopy and other analytical studies reveal distorted octahedral geometry for all complexes. The antibacterial activity of the ligand and preparers metal complexes was also studied against gram and negative bacteria.
Allosteric inhibition of EGFR tyrosine kinase (TK) is currently among the most attractive approaches for designing and developing anti-cancer drugs to avoid chemoresistance exhibited by clinically approved ATP-competitive inhibitors. The current work aimed to synthesize new biphenyl-containing derivatives that were predicted to act as EGFR TK allosteric site inhibitors based on molecular docking studies.
A new series of 4'-hydroxybiphenyl-4-carboxylic acid derivatives, including hydrazine-1-carbothioamide (S3-S6) and 1,2,4-triazole (S7-S10) derivatives, were synthesized and characterized using IR, 1HNMR, 13CNMR
The compounds 3-[4̄-(4˭-methoxybenzoyloxy) benzylideneamino]-2-thioxo-imidazolidine-4-one(3)aand 4-(1-(5-oxo- 2-thioxoimidazolidin-1-ylimino)ethyl)phenyl acetate(3)b were prepared from the reaction of aromatic aldehyde or ketone(1)a,bwith thiosemicarbazide to give aryl thiosemicarbazones(2)a,b ,followed by cyclization with ethylchloroacetate in the presence of fused sodium acetate. Treatment the compounds(3)a,bwith 4- hydroxybenzenediazoniumchloride yielded the correspondings4-((4-((4-hydroxyphenyl)diazenyl)-5-oxo-2- thioxoimidazolidin-1-ylimino)methyl)phenyl 4-methoxybenzoate(4)aand4-(1-(4-((4-hydroxyphenyl)diazenyl)-5-oxo-2- thioxoimidazolidin-1-ylimino)ethyl)phenyl acetate(4)b.The new 2-thioxo-imidazolidin-4-one with esters (5-7)a,b sy
... Show More