Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep learning techniques, which were based on a convolutional neural network (CNN) or autoencoder, to extract features and combine them with the next step of the meta-heuristic algorithm in order to select optimal features using the particle swarm optimization (PSO) algorithm. This combination sought to reduce the dimensionality of the datasets while maintaining the original performance of the data. This is considered an innovative method and ensures highly accurate classification results across various medical datasets. Several classifiers were employed to predict the diseases. The COVID-19 dataset found that the highest accuracy was 99.76% using the combination of CNN-PSO-SVM. In comparison, the brain tumor dataset obtained 99.51% accuracy, the highest accuracy derived using the combination method of autoencoder-PSO-KNN.
Medical image segmentation is one of the most actively studied fields in the past few decades, as the development of modern imaging modalities such as magnetic resonance imaging (MRI) and computed tomography (CT), physicians and technicians nowadays have to process the increasing number and size of medical images. Therefore, efficient and accurate computational segmentation algorithms become necessary to extract the desired information from these large data sets. Moreover, sophisticated segmentation algorithms can help the physicians delineate better the anatomical structures presented in the input images, enhance the accuracy of medical diagnosis and facilitate the best treatment planning. Many of the proposed algorithms could perform w
... Show MoreAfter the information revolution that occurred in the Western world, and the developments in all fields, especially in the field of education and e-learning, from an integrated system based on the effective employment of information and communication technology in the teaching and learning processes through an environment rich in computer and Internet applications, the community and the learner were able to access information sources and learning at any time and place, in a way that achieves mutual interaction between the elements of the system and the surrounding environment. After the occurrence of the phenomenon of Covid 19, it led to a major interruption in all educational systems that had never happened before, and the disrupt
... Show MoreResumen
El presente trabajo nace de una inquietud por la enseñanza del español en Irak a nivel universitario especialmente ante las dificultades que los alumnos árabes en general, e iraquíes en particular, encuentran en su proceso de aprendizaje. Nuestra primera inclinación fue, pues, prestar una atención directa y cercana al alumno como sujeto del aprendizaje, así como a lo que el alumno produce como resultado del mismo. En el presente trabajo pretendemos dotar al estudiante de los conocimientos lingüísticos necesarios para poder interaccionar en una variedad de situaciones y enfrentarse a problemas cotidianos, de manera que desarrolle las destrezas comunicativas que le permitan establecer una co
... Show MoreAbstract
This research presents a on-line cognitive tuning control algorithm for the nonlinear controller of path-tracking for dynamic wheeled mobile robot to stabilize and follow a continuous reference path with minimum tracking pose error. The goal of the proposed structure of a hybrid (Bees-PSO) algorithm is to find and tune the values of the control gains of the nonlinear (neural and back-stepping method) controllers as a simple on-line with fast tuning techniques in order to obtain the best torques actions of the wheels for the cart mobile robot from the proposed two controllers. Simulation results (Matlab Package 2012a) show that the nonlinear neural controller with hybrid Bees-PSO cognitive algorithm is m
... Show MoreCorrect grading of apple slices can help ensure quality and improve the marketability of the final product, which can impact the overall development of the apple slice industry post-harvest. The study intends to employ the convolutional neural network (CNN) architectures of ResNet-18 and DenseNet-201 and classical machine learning (ML) classifiers such as Wide Neural Networks (WNN), Naïve Bayes (NB), and two kernels of support vector machines (SVM) to classify apple slices into different hardness classes based on their RGB values. Our research data showed that the DenseNet-201 features classified by the SVM-Cubic kernel had the highest accuracy and lowest standard deviation (SD) among all the methods we tested, at 89.51 % 1.66 %. This
... Show MoreIn this paper, a miniaturized 2 × 2 electro-optic plasmonic Mach– Zehnder switch (MZS) based on metal–polymer–silicon hybrid waveguide is presented. Adiabatic tapers are designed to couple the light between the plasmonic phase shifter, implemented in each of the MZS arms, and the 3-dB input/output directional couplers. For 6 µm-long hybrid plasmonic waveguide supported by JRD1 polymer (r33= 390 pm/V), a π-phase shift voltage of 2 V is obtained. The switch is designed for 1550 nm operation wavelength using COMSOL software and characterizes by 2.3 dB insertion loss, 9.9 fJ/bit power consumption, and 640 GHz operation bandwidth
Geographic Information Systems (GIS) are obtaining a significant role in handling strategic applications in which data are organized as records of multiple layers in a database. Furthermore, GIS provide multi-functions like data collection, analysis, and presentation. Geographic information systems have assured their competence in diverse fields of study via handling various problems for numerous applications. However, handling a large volume of data in the GIS remains an important issue. The biggest obstacle is designing a spatial decision-making framework focused on GIS that manages a broad range of specific data to achieve the right performance. It is very useful to support decision-makers by providing GIS-based decision support syste
... Show MoreThis paper demonstrates the design of an algorithm to represent the design stages of fixturing system that serve in increasing the flexibility and automation of fixturing system planning for uniform polyhedral part. This system requires building a manufacturing feature recognition algorithm to present or describe inputs such as (configuration of workpiece) and built database system to represents (production plan and fixturing system exiting) to this algorithm. Also knowledge – base system was building or developed to find the best fixturing analysis (workpiece setup, constraints of workpiece and arrangement the contact on this workpiece) to workpiece.