Preferred Language
Articles
/
XRjSM5UBVTCNdQwCoSo1
A Novel Hybrid Machine Learning-Based System Using Deep Learning Techniques and Meta-Heuristic Algorithms for Various Medical Datatypes Classification
...Show More Authors

Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep learning techniques, which were based on a convolutional neural network (CNN) or autoencoder, to extract features and combine them with the next step of the meta-heuristic algorithm in order to select optimal features using the particle swarm optimization (PSO) algorithm. This combination sought to reduce the dimensionality of the datasets while maintaining the original performance of the data. This is considered an innovative method and ensures highly accurate classification results across various medical datasets. Several classifiers were employed to predict the diseases. The COVID-19 dataset found that the highest accuracy was 99.76% using the combination of CNN-PSO-SVM. In comparison, the brain tumor dataset obtained 99.51% accuracy, the highest accuracy derived using the combination method of autoencoder-PSO-KNN.

Scopus Clarivate Crossref
View Publication
Publication Date
Tue Jul 24 2018
Journal Name
Sensors
Adaptive Windowing Framework for Surface Electromyogram-Based Pattern Recognition System for Transradial Amputees
...Show More Authors

Electromyogram (EMG)-based Pattern Recognition (PR) systems for upper-limb prosthesis control provide promising ways to enable an intuitive control of the prostheses with multiple degrees of freedom and fast reaction times. However, the lack of robustness of the PR systems may limit their usability. In this paper, a novel adaptive time windowing framework is proposed to enhance the performance of the PR systems by focusing on their windowing and classification steps. The proposed framework estimates the output probabilities of each class and outputs a movement only if a decision with a probability above a certain threshold is achieved. Otherwise (i.e., all probability values are below the threshold), the window size of the EMG signa

... Show More
View Publication
Crossref (25)
Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
Mining categorical Covid-19 data using chi-square and logistic regression algorithms
...Show More Authors

View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Aug 01 2016
Journal Name
2016 38th Annual International Conference Of The Ieee Engineering In Medicine And Biology Society (embc)
Selecting the optimal movement subset with different pattern recognition based EMG control algorithms
...Show More Authors

View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Sun Dec 22 2024
Journal Name
Journal Of Petroleum Research And Studies
Optimizing Well Placement with Genetic Algorithms: A Case Study
...Show More Authors

Maximizing the net present value (NPV) of oil field development is heavily dependent on optimizing well placement. The traditional approach entails the use of expert intuition to design well configurations and locations, followed by economic analysis and reservoir simulation to determine the most effective plan. However, this approach often proves inadequate due to the complexity and nonlinearity of reservoirs. In recent years, computational techniques have been developed to optimize well placement by defining decision variables (such as well coordinates), objective functions (such as NPV or cumulative oil production), and constraints. This paper presents a study on the use of genetic algorithms for well placement optimization, a ty

... Show More
View Publication
Crossref
Publication Date
Mon Aug 19 2024
Journal Name
Scientific Reports
An in-vitro evaluation of residual dentin retained after using novel enzymatic-based chemomechanical caries removal agents
...Show More Authors

To assess the biochemical, mechanical and structural characteristics of retained dentin after applying three novel bromelain‑contained chemomechanical caries removal (CMCR) formulations in comparison to the conventional excavation methods (hand and rotary) and a commercial papain‑contained gel (Brix 3000). Seventy‑two extracted permanent molars with natural occlusal carious lesions (score > 4 following the International Caries Detection and Assessment System (ICDAS‑II)) were randomly allocated into six groups (n = 12) according to the excavation methods: hand excavation, rotary excavation, Brix 3000, bromelain‑contained gel (F1), bromelain‑chloramine‑T (F2), and bromelain chlorhexidine gel (F3). The superficial and deepe

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Feb 10 2019
Journal Name
Journal Of The College Of Education For Women
The Attitude of the University of Baghdad Students towards the Mixed and Single-Sex Learning
...Show More Authors

The study aims at finding out:
1. The students' attitude towards the mixed learning at the university.
2. The statistically significant differences in attitude towards the mixed learning at the university according to the specialization variable.
3. The statistically significant differences in attitude towards the mixed learning at the university according to the gender variable.
The researcher has constructed a scale for measuring the students' attitude towards the mixed learning at the university.
After assuring its validity and reliability, the scale has been given to a sample of (100) students. The sample is selected randomly from (4) colleges of the university of Baghdad, (2) for scientific specialization and (2)for h

... Show More
View Publication Preview PDF
Publication Date
Mon Aug 21 2023
Journal Name
Communications In Mathematical Biology And Neuroscience
New techniques to estimate the solution of autonomous system
...Show More Authors

This research aims to solve the nonlinear model formulated in a system of differential equations with an initial value problem (IVP) represented in COVID-19 mathematical epidemiology model as an application using new approach: Approximate Shrunken are proposed to solve such model under investigation, which combines classic numerical method and numerical simulation techniques in an effective statistical form which is shrunken estimation formula. Two numerical simulation methods are used firstly to solve this model: Mean Monte Carlo Runge-Kutta and Mean Latin Hypercube Runge-Kutta Methods. Then two approximate simulation methods are proposed to solve the current study. The results of the proposed approximate shrunken methods and the numerical

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Sat Sep 28 2024
Journal Name
Asia-pacific Journal Of Molecular Biology And Biotechnology
A novel method for the degradation of human blood clot by immobilised bromelain using multi-walled carbon nanotube and polyphenol oxidase
...Show More Authors

Pathological blood clot in blood vessels, which often leads to cardiovascular diseases, are one of the most common causes of death in humans. Therefore, enzymatic therapy to degrade blood clots is vital. To achieve this goal, bromelain was immobilized and used for the biodegradation of blood clots. Bromelain was extracted from the pineapple fruit pulp (Ananas comosus) and purified by ion exchange chromatography after precipitation with ammonium sulphate (0-80 %), resulting in a yield of 70%, purification fold of 1.42, and a specific activity of 1175 U/mg. Bromelain was covalently immobilized on functionalized multi-walled carbon nanotubes (MWCNT), with an enzyme loading of 71.35%. The results of the characterization of free and immobilized

... Show More
View Publication
Scopus Crossref
Publication Date
Tue Aug 01 2023
Journal Name
Baghdad Science Journal
A New Model Design for Combating COVID -19 Pandemic Based on SVM and CNN Approaches
...Show More Authors

       In the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from      Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (3)
Scopus Crossref
Publication Date
Fri Jul 28 2023
Journal Name
Journal Of Advanced Pharmaceutical Technology & Research
Development of a spectrophotometric analytical approach for the measurement of cefdinir in various pharmaceuticals
...Show More Authors

View Publication Preview PDF
Scopus Crossref