Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep learning techniques, which were based on a convolutional neural network (CNN) or autoencoder, to extract features and combine them with the next step of the meta-heuristic algorithm in order to select optimal features using the particle swarm optimization (PSO) algorithm. This combination sought to reduce the dimensionality of the datasets while maintaining the original performance of the data. This is considered an innovative method and ensures highly accurate classification results across various medical datasets. Several classifiers were employed to predict the diseases. The COVID-19 dataset found that the highest accuracy was 99.76% using the combination of CNN-PSO-SVM. In comparison, the brain tumor dataset obtained 99.51% accuracy, the highest accuracy derived using the combination method of autoencoder-PSO-KNN.
The aim of this stud to isolate and identified of A. fumigatus from different sources and study the genetic diversity among these isolates by using RAPD and ISSR markers.Collected 20 samples from 7samples were isolated A. fumigatusisolates were characterized depending on its morphological, then extracted DNA from its.RAPD markersrandomly bandingwith sitesof genome more than ISSR markers where the primer OPN-07 achieved discriminative power (19.1) and 43 bands, while ISSR6 achieved discriminative power (17.1) with 32 bands.ISSR were more efficiency in specific binding then RAPD, ISSR primers has great a binding to production unique band, when 9 primers from 01 primers, ISSR9 was produce (5) unique bands, while RAPD markers was low ability
... Show MoreTThe property of 134−140Neodymium nuclei have been studied in framework Interacting Boson Model (IBM) and a new method called New Empirical Formula (NEF). The energy positive parity bands of 134−140Nd have been calculated using (IBM) and (NEF) while the negative parity bands of 134−140Nd have been calculated using (NEF) only. The E-GOS curve as a function of the spin (I) has been drawn to determine the property of the positive parity yrast band. The parameters of the best fit to the measured data are determined. The reduced transition probabilities of these nuclei was calculated. The critical point has been determined for 140Nd isotope. The potential energy surfaces (PESs) to the IBM Hamiltonian have been obtained using the intrin
... Show MoreEmbedding an identifying data into digital media such as video, audio or image is known as digital watermarking. In this paper, a non-blind watermarking algorithm based on Berkeley Wavelet Transform is proposed. Firstly, the embedded image is scrambled by using Arnold transform for higher security, and then the embedding process is applied in transform domain of the host image. The experimental results show that this algorithm is invisible and has good robustness for some common image processing operations.
This search has introduced the techniques of multi-wavelet transform and neural network for recognition 3-D object from 2-D image using patches. The proposed techniques were tested on database of different patches features and the high energy subband of discrete multi-wavelet transform DMWT (gp) of the patches. The test set has two groups, group (1) which contains images, their (gp) patches and patches features of the same images as a part of that in the data set beside other images, (gp) patches and features, and group (2) which contains the (gp) patches and patches features the same as a part of that in the database but after modification such as rotation, scaling and translation. Recognition by back propagation (BP) neural network as
... Show More
The effective surface area of drug particle is increased by a reduction in the particle size. Since dissolution takes place at the surface of the solute, the larger the surface area, the further rapid is the rate of drug dissolution. Ketoprofen is class II type drug according to (Biopharmaceutics Classification System BCS) with low solubility and high permeability. The aim of this investigation was to increase the solubility and hence the dissolution rate by the preparation of ketoprofen nanosuspension using solvent evaporation method. Materials like PVP K30, poloxamer 188, HPMC E5, HPMC E15, HPMC E50, Tween 80 were used as stabilizers in perpetration of differ
... Show MoreThe microbend sensor is designed to experience a light loss when force is applied to the sensor. The periodic microbends cause propagating light to couple into higher order modes, the existing higher order modes become unguided modes. Three models of deform cells are fabricated at (3, 5, 8) mm pitchand tested by using MMF and laser source at 850 nm. The maximum output power of (8, 5, 3)mm model is (3, 2.7, 2.55)nW respectively at applied force 5N and the minimum value is (1.9, 1.65, 1.5)nW respectively at 60N.The strain is calculated at different microbend cells ,and the best sensitivity of this sensor for cell 8mm is equal to 0.6nW/N.
This article aims to estimate the partially linear model by using two methods, which are the Wavelet and Kernel Smoothers. Simulation experiments are used to study the small sample behavior depending on different functions, sample sizes, and variances. Results explained that the wavelet smoother is the best depending on the mean average squares error criterion for all cases that used.