Preferred Language
Articles
/
XRjSM5UBVTCNdQwCoSo1
A Novel Hybrid Machine Learning-Based System Using Deep Learning Techniques and Meta-Heuristic Algorithms for Various Medical Datatypes Classification
...Show More Authors

Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep learning techniques, which were based on a convolutional neural network (CNN) or autoencoder, to extract features and combine them with the next step of the meta-heuristic algorithm in order to select optimal features using the particle swarm optimization (PSO) algorithm. This combination sought to reduce the dimensionality of the datasets while maintaining the original performance of the data. This is considered an innovative method and ensures highly accurate classification results across various medical datasets. Several classifiers were employed to predict the diseases. The COVID-19 dataset found that the highest accuracy was 99.76% using the combination of CNN-PSO-SVM. In comparison, the brain tumor dataset obtained 99.51% accuracy, the highest accuracy derived using the combination method of autoencoder-PSO-KNN.

Scopus Clarivate Crossref
View Publication
Publication Date
Mon Jan 01 2024
Journal Name
Communications In Computer And Information Science
Automatic Identification of Ear Patterns Based on Convolutional Neural Network
...Show More Authors

Biometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in

... Show More
View Publication
Scopus Crossref
Publication Date
Thu Jan 01 2015
Journal Name
International Journal Of Application Or Innovation In Engineering & Management
Far Infrared Photoconductive Detector Based on Multi-Wall Carbon Nanotubes
...Show More Authors

Far infrared photoconductive detectors based on multi-wall carbon nanotubes (MWCNTs) were fabricated and their characteristics were tested. MWCNTs films deposited on porous silicon (PSi) nanosurface by dip and drop coating techniques. Two types of deposited methods were used; dip coating sand drop –by-drop methods. As well as two types of detector were fabricated one with aluminum mask and the other without, and their figures of merits were studied. The detectors were illuminated by 2.2 and 2.5 Watt from CO2 of 10.6 􀀀m and tested. The surface morphology for the films is studied using AFM and SEM micrographs. The films show homogeneous distributed for CNTs on the PSi layer. The root mean square (r.m.s.) of the films surface roughness in

... Show More
Publication Date
Mon Sep 21 2020
Journal Name
Iraqi Journal For Electrical And Electronic Engineering
Emotion Recognition Based on Mining Sub-Graphs of Facial Components
...Show More Authors

Facial emotion recognition finds many real applications in the daily life like human robot interaction, eLearning, healthcare, customer services etc. The task of facial emotion recognition is not easy due to the difficulty in determining the effective feature set that can recognize the emotion conveyed within the facial expression accurately. Graph mining techniques are exploited in this paper to solve facial emotion recognition problem. After determining positions of facial landmarks in face region, twelve different graphs are constructed using four facial components to serve as a source for sub-graphs mining stage using gSpan algorithm. In each group, the discriminative set of sub-graphs are selected and fed to Deep Belief Network (DBN) f

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jul 01 2011
Journal Name
Engineering And Technology Journal
Off-Line Arabic Signature Recognition Based on Invariant Moments Properties
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Journal Of Physics: Conference Series
Art Image Compression Based on Lossless LZW Hashing Ciphering Algorithm
...Show More Authors
Abstract<p>Color image compression is a good way to encode digital images by decreasing the number of bits wanted to supply the image. The main objective is to reduce storage space, reduce transportation costs and maintain good quality. In current research work, a simple effective methodology is proposed for the purpose of compressing color art digital images and obtaining a low bit rate by compressing the matrix resulting from the scalar quantization process (reducing the number of bits from 24 to 8 bits) using displacement coding and then compressing the remainder using the Mabel ZF algorithm Welch LZW. The proposed methodology maintains the quality of the reconstructed image. Macroscopic and </p> ... Show More
View Publication
Scopus (8)
Crossref (2)
Scopus Crossref
Publication Date
Tue Mar 12 2019
Journal Name
Al-khwarizmi Engineering Journal
Optimization Drilling Parameters of Aluminum Alloy Based on Taguchi Method
...Show More Authors

This paper focuses on the optimization of drilling parameters by utilizing “Taguchi method” to obtain the minimum surface roughness. Nine drilling experiments were performed on Al 5050 alloy using high speed steel twist drills. Three drilling parameters (feed rates, cutting speeds, and cutting tools) were used as control factors, and L9 (33) “orthogonal array” was specified for the experimental trials. Signal to Noise (S/N) Ratio and “Analysis of Variance” (ANOVA) were utilized to set the optimum control factors which minimized the surface roughness. The results were tested with the aid of statistical software package MINITAB-17. After the experimental trails, the tool diameter was found as the most important facto

... Show More
View Publication Preview PDF
Crossref (15)
Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Mathematics
Face Recognition Algorithm Based on Fast Computation of Orthogonal Moments
...Show More Authors

Face recognition is required in various applications, and major progress has been witnessed in this area. Many face recognition algorithms have been proposed thus far; however, achieving high recognition accuracy and low execution time remains a challenge. In this work, a new scheme for face recognition is presented using hybrid orthogonal polynomials to extract features. The embedded image kernel technique is used to decrease the complexity of feature extraction, then a support vector machine is adopted to classify these features. Moreover, a fast-overlapping block processing algorithm for feature extraction is used to reduce the computation time. Extensive evaluation of the proposed method was carried out on two different face ima

... Show More
View Publication
Scopus (28)
Crossref (23)
Scopus Clarivate Crossref
Publication Date
Thu Mar 01 2018
Journal Name
Journal Of Engineering
Flexible Genetic Algorithm Based Optimal Power Flow of Power Systems
...Show More Authors

Nowadays, the power plant is changing the power industry from a centralized and vertically integrated form into regional, competitive and functionally separate units. This is done with the future aims of increasing efficiency by better management and better employment of existing equipment and lower price of electricity to all types of customers while retaining a reliable system. This research is aimed to solve the optimal power flow (OPF) problem. The OPF is used to minimize the total generations fuel cost function. Optimal power flow may be single objective or multi objective function. In this thesis, an attempt is made to minimize the objective function with keeping the voltages magnitudes of all load buses, real outp

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Apr 09 2016
Journal Name
Photonic Sensors
Parametric Analysis of NO2 Gas Sensor Based on Carbon Nanotubes
...Show More Authors

View Publication
Scopus (34)
Crossref (34)
Scopus Clarivate Crossref
Publication Date
Thu Dec 09 2021
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
An Overview of Some Plant Based Products With Hepatoprotective Activity
...Show More Authors

In folk medicine there are various medicinal amalgamation possessing hepatoprotective activity. This activity is of significance because several toxins cause liver injury. Hence, many pharmaceutical companies are targeting herbal medicines for the treatment of liver abnormalities and towards evolving a safe and effective formulation with desired route of administration. In current review we have focused on the studies showing hepatoprotective effect using marine compounds and plant derived compounds. Liver disorder, a global health problem, usually include acute or chronic hepatitis, heptoses, and cirrhosis. It may be due to toxic chemicals and certain antibiotics. Uncontrolled consumption of alcohol also affects liver in an unhealthy wa

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Crossref