Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep learning techniques, which were based on a convolutional neural network (CNN) or autoencoder, to extract features and combine them with the next step of the meta-heuristic algorithm in order to select optimal features using the particle swarm optimization (PSO) algorithm. This combination sought to reduce the dimensionality of the datasets while maintaining the original performance of the data. This is considered an innovative method and ensures highly accurate classification results across various medical datasets. Several classifiers were employed to predict the diseases. The COVID-19 dataset found that the highest accuracy was 99.76% using the combination of CNN-PSO-SVM. In comparison, the brain tumor dataset obtained 99.51% accuracy, the highest accuracy derived using the combination method of autoencoder-PSO-KNN.
Wireless sensor networks (WSNs) represent one of the key technologies in internet of things (IoTs) networks. Since WSNs have finite energy sources, there is ongoing research work to develop new strategies for minimizing power consumption or enhancing traditional techniques. In this paper, a novel Gaussian mixture models (GMMs) algorithm is proposed for mobile wireless sensor networks (MWSNs) for energy saving. Performance evaluation of the clustering process with the GMM algorithm shows a remarkable energy saving in the network of up to 92%. In addition, a comparison with another clustering strategy that uses the K-means algorithm has been made, and the developed method has outperformed K-means with superior performance, saving ener
... Show MoreBackground: Many studies have been conducted to evaluate the effect of using a hot material in the root canal and its potential for causing damage to the tooth supporting structure. Materials and methods: thirty permanent premolars were obturated with thermoplasticized Gutta-Percha using three different obturation techniques: soft core, Thermafil, and obtura to evaluate the rise in temperature on the root surface using a multipurpose digital thermometer. Results: temperature increases was significantly greater for Obtura versus Soft core (p<0.003), not significant for Thermafil versus Soft core (p<0.087), and Thermafil versus Obtura (p<0.125). Conclusions: temperatures rise on the root surface were below the critical level and, therefore, s
... Show MoreWith its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques. T
... Show MoreElastic electron scattering form factors, charge density distributions and charge,neutron and matter root mean square (rms) radii for P24PMg, P28PSi and P32PS nuclei arestudied using the effect of occupation numbers. Single-particle radial wave functionsof harmonic-oscillators (HO) potential are used. In general, the results of elasticcharge form factors showed good agreement with experimental data. The occupationnumbers are taken to reproduce the quantities mentioned above. The inclusion ofoccupation numbers enhances the form factors to become closer to the data. For thecalculated charge density distributions, the results show good agreement withexperimental data except the fail to produce the hump in the central region for P28PSinucleus.
... Show MoreThe aim of this study was to identify the rate of return of the stock through the financial information disclosed by the financial statements of companies both services and insurance included in Iraqi market for securities . The study used a descriptive statistical methods and the correlation matrix for the independent factors , in addition to a regression model for data analysis and hypothesis . Model included a number of independent variables , which was measured in the size of company (sales or revenue) , and the leverage , in addition to the structure of assets and the book value of owners' equity in the company , as well as the general price index .Based on the data of (11)companies and for three years, showed the result
... Show MoreA simple, rapid, sensitive and inexpensive approach is described in this work based on a combination of solid‐phase extraction of 8‐hydroxyquinoline (8HQ), for speciation and preconcentration of Cr(III) and Cr(VI) in river water, and the direct determination of these species using a flow injection system with chemiluminescence detection (FI–CL) and a 4‐diethylamino phenyl hydrazine (DEAPH)–hydrogen peroxide system. At different pH, the two forms of chromium [Cr(III) and Cr(VI)] have different exchange capacities for 8HQ, therefore two columns were constructed; the pH of column 1 was adjusted to pH 3 for retaining Cr(III) and column 2 was adjusted to pH 1 for retaining of Cr(VI). The sorbe
The paper is devoted to solve nth order linear delay integro-differential equations of convolution type (DIDE's-CT) using collocation method with the aid of B-spline functions. A new algorithm with the aid of Matlab language is derived to treat numerically three types (retarded, neutral and mixed) of nth order linear DIDE's-CT using B-spline functions and Weddle rule for calculating the required integrals for these equations. Comparison between approximated and exact results has been given in test examples with suitable graphing for every example for solving three types of linear DIDE's-CT of different orders for conciliated the accuracy of the results of the proposed method.
In this paper we use the Markov Switching model to investigate the link between the level of Iraqi inflation and its uncertainty; forth period 1980-2010 we measure inflation uncertainty as the variance of unanticipated inflation. The results ensure there are a negative effect of inflation level on inflation uncertainty and all so there are a positive effect of inflation uncertainty on inflation level.  
... Show More