Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep learning techniques, which were based on a convolutional neural network (CNN) or autoencoder, to extract features and combine them with the next step of the meta-heuristic algorithm in order to select optimal features using the particle swarm optimization (PSO) algorithm. This combination sought to reduce the dimensionality of the datasets while maintaining the original performance of the data. This is considered an innovative method and ensures highly accurate classification results across various medical datasets. Several classifiers were employed to predict the diseases. The COVID-19 dataset found that the highest accuracy was 99.76% using the combination of CNN-PSO-SVM. In comparison, the brain tumor dataset obtained 99.51% accuracy, the highest accuracy derived using the combination method of autoencoder-PSO-KNN.
Hyperlipidemia is one of the most important factors leading to atherosclerosis and heart disease, therefore, this study conducted to examine the effect of two newly synthesized compounds[3-(5(ethylthio)-1,3,4-thiadiazol-2-yl)-2,3-dihydro-2-(3-nitrophenyl)benzo[1-3-e] thiazin-4-one (I) and 5(4dimethyl amino) benzylidene amino)-1,3,4-thiadiazole-2-thiol(II)] on the activities of creatine kinase(CK) and 3-hydroxy-3-methylglutaryl- CoA reductase (HMGR) in male Wister mice . Also to determine the type of inhibition of these compounds on the above enzymes .The study was carried out on sixty male Wister mice aged seven to eight weeks their weight ranged(180-200 g) . The mice were grouped as: group(1): control group (12 mice).Group(2):consisted
... Show MoreBackground: Many studies have been conducted to evaluate the effect of using a hot material in the root canal and its potential for causing damage to the tooth supporting structure. Materials and methods: thirty permanent premolars were obturated with thermoplasticized Gutta-Percha using three different obturation techniques: soft core, Thermafil, and obtura to evaluate the rise in temperature on the root surface using a multipurpose digital thermometer. Results: temperature increases was significantly greater for Obtura versus Soft core (p<0.003), not significant for Thermafil versus Soft core (p<0.087), and Thermafil versus Obtura (p<0.125). Conclusions: temperatures rise on the root surface were below the critical level and, therefore, s
... Show MoreWith its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques. T
... Show More<span lang="EN-US">The use of bio-signals analysis in human-robot interaction is rapidly increasing. There is an urgent demand for it in various applications, including health care, rehabilitation, research, technology, and manufacturing. Despite several state-of-the-art bio-signals analyses in human-robot interaction (HRI) research, it is unclear which one is the best. In this paper, the following topics will be discussed: robotic systems should be given priority in the rehabilitation and aid of amputees and disabled people; second, domains of feature extraction approaches now in use, which are divided into three main sections (time, frequency, and time-frequency). The various domains will be discussed, then a discussion of e
... Show MoreBark fiber has high potential use for composite reinforcement in biocomposite material. The aim of this study is the mechanical properties of Bark fiber reinforced polester composite with varying fiber weight fraction (0% , 5% , 10% , 20%, 30% and 40%) hand lay-up technique which was used to prepare the composite , specimens for tensile , flexural and impact test according to the ASTM D638 , ASTMD790 , and Iso-179. The over all results showed that the composite is reinforced with Bark fiber at weight (10%) higher mechanical properties , and the composite showed improved mechanical (Flexural).
fashion designers who have benefited greatly from the mobilization of ancient aesthetic ideas in the heritage of the people and guaranteed in their productions so that there is no change In the aesthetic value created by the designers of the research in the ancient heritage to find new signs that reflect the connection of man to the present as the aesthetic value of all the man created by the designs of fabrics and fashion through the ages The problem of research was determined in the absence of a precise understanding of the nature of classical thought in fashion and the absence of a clear perception of the sustainability of this thought in contemporary fashion. He
... Show MoreThis article aims to explore the importance of estimating the a semiparametric regression function ,where we suggest a new estimator beside the other combined estimators and then we make a comparison among them by using simulation technique . Through the simulation results we find that the suggest estimator is the best with the first and second models ,wherealse for the third model we find Burman and Chaudhuri (B&C) is best.
ABSTRACT Planetary Nebulae (PN) distances represent the fundamental parameter for the determination the physical properties of the central star of PN. In this paper the distances scale to Planetary Nebulae in the Galactic bulge were calculated re- lated to previous distances scales. The proposed distance scale was done by recalibrated the previous distance scale technique CKS/D82. This scale limited for nearby PN (D ≤ 3.5 kpc), so the surface fluxes less than other distance scales. With these criteria the results showed that the proposed distance scale is more accurate than other scales related to the observations for adopted sample of PN distances, also the limit of ionized radius (Rio) for all both optically thick and optically thin in
... Show MoreIn this paper, an Integral Backstepping Controller (IBC) is designed and optimized for full control, of rotational and translational dynamics, of an unmanned Quadcopter (QC). Before designing the controller, a mathematical model for the QC is developed in a form appropriate for the IBC design. Due to the underactuated property of the QC, it is possible to control the QC Cartesian positions (X, Y, and Z) and the yaw angle through ordering the desired values for them. As for the pitch and roll angles, they are generated by the position controllers. Backstepping Controller (BC) is a practical nonlinear control scheme based on Lyapunov design approach, which can, therefore, guarantee the convergence of the position tracking
... Show MoreLong memory analysis is one of the most active areas in econometrics and time series where various methods have been introduced to identify and estimate the long memory parameter in partially integrated time series. One of the most common models used to represent time series that have a long memory is the ARFIMA (Auto Regressive Fractional Integration Moving Average Model) which diffs are a fractional number called the fractional parameter. To analyze and determine the ARFIMA model, the fractal parameter must be estimated. There are many methods for fractional parameter estimation. In this research, the estimation methods were divided into indirect methods, where the Hurst parameter is estimated fir
... Show More