Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep learning techniques, which were based on a convolutional neural network (CNN) or autoencoder, to extract features and combine them with the next step of the meta-heuristic algorithm in order to select optimal features using the particle swarm optimization (PSO) algorithm. This combination sought to reduce the dimensionality of the datasets while maintaining the original performance of the data. This is considered an innovative method and ensures highly accurate classification results across various medical datasets. Several classifiers were employed to predict the diseases. The COVID-19 dataset found that the highest accuracy was 99.76% using the combination of CNN-PSO-SVM. In comparison, the brain tumor dataset obtained 99.51% accuracy, the highest accuracy derived using the combination method of autoencoder-PSO-KNN.
تعد الملابس وسيلة هامة لكل مايقوم به الانسان في حياته العامة ، فهي الانطباع والكلمة الخارجية عن ذاته الداخلية فهي تعكس فكرة الفرد عن ذاته وعن شخصيته , كما تعد وسيلة تعبير جمالية وفنية , فهي تساعد على اخفاء عيوب الجسد وابراز محاسنه . ويتوقف اختيار الفرد لملابسه على مجموعة عوامل منها احتياجه , قدراته المالية , سنه , مركزه الاجتماعي , طبيعة عمله ,الظروف الجوية التي يعيش فيها وعلى مايُؤمن به من قيم و
... Show MoreSeparation of Trigonelline, the major alkaloid in fenugreek seeds, is difficult because the extract of these seeds usually contains Trigonelline, choline, mucilage, and steroidal saponins, in addition to some other substances. This study amis to isolate the quaternary ammonium alkaloid (Trigonelline) and choline from fenugreek seeds (Trigonella-foenum graecum L.) which have similar physiochemical properties by modifying of the classical method. Seeds were defatted and then extracted with methanol. The presence of alkaloids was detected by using Mayer's and Dragendorff's reagents. In this work, trigonilline was isolated with traces of choline by subsequent processes of purification using analytical and preparative TLC techniques.
... Show MoreThis study includes a physiochemical and a spectrocpical characterization to some alkaloid compounds in the (ANAB AL- THEAB) plant (Solanum nigrun L.). It’s the most important medicinal herb belonging to the family (Solanaceae). Acid hydrolysis was performed by using limited conc. of Hcl and H2SO4, to obtain the aglycon part of previously separated steroidal componants as (A, B and C). The characterization of the(A,B and C) compounds indicates that they varied between them as the separated steroidal like-alkaloids, carried by using melting point (m.p.), thin layer chromatography (TLC), Infra -Red spectroscopy (IR) and Ultra violet-Visible spectroscopy (UV - Visible).High perfor
... Show MoreBackground: Plasma-activated water (PAW) is considered one of the emerging strategies that has been highlighted recently in the food industry for microbial decontamination and mycotoxin detoxification, due to its unique provisional characteristics. Aim: The effectiveness of PAW for aflatoxin B1 (AFB1), ochratoxin A (OTA), and fumonisin B1 (FB1) detoxification in naturally contaminated poultry feeds with its impacts on the feed quality were inspected. Methods: PAW-30 and PAW-60 were utilized for feed treatment for six time durations (5, 10, 15, 20, 40 and 60 min) each. The alterations in the physicochemical properties of PAW after different time durations of plasma inducement and treatment with and without feed samples were monit
... Show MoreThis paper concerns is the preparation and characterization of a bidentate ligand [4-(5,5- dimethyl-3-oxocyclohex-1-enylamino)-N-(5-methylisoxazol-3-yl) benzene sulfonamide]. The ligand was prepared from fusing of sulfamethoxazole and dimedone at (140) ºC for half hour. The complex was prepared by refluxing the ligand with a bivalent cobalt ion using ethanol as a solvent. The prepared ligand and complex were identified using Spectroscopic methods. The proposed tetrahedral geometry around the metal ions studied were concluded from these measurements. Both molar ratio and continuous variation method were studied to determine metal to ligand ratio (M:L). The M to L ratio was found to be (1:1). The adsorption of cobalt complex was carried out
... Show MoreCholesteryl ester transfer protein gene contains some single nucleotide polymorphisms, which have been associated with serum high-density lipoprotein concentration and other lipoproteins. This study is done for determining of cholesteryl ester transfer protein polymorphism and evaluate its effect on serum lipid profile concentrations in some hyperlipidemic patients compared with healthy subjects in Salah Al-din governorate-Iraq. Blood samples were taken from (90) patients suffering from hyperlipidemia, and (70) samples that were apparently healthy controls. Serum lipid concentrations were measured by enzymatic assays. The polymorphism was genotyped using polymerase chain reaction restriction fragment length polymorphism analysis.&n
... Show MoreBACKGROUND: Diabetes Mellitus is a complex chronic illness that has increased significantly around the world and is expected to affect 628 million in 2045. Undiagnosed type 2 diabetes may affect 24% - 62% of the people with diabetes; while the prevalence of prediabetes is estimated to be 470 million cases by 2030. AIM OF STUDY: To find the percentage of undiagnosed diabetes and prediabetes in a slice of people aged ≥ 45years, and relate it with age, gender, central obesity, hypertension, and family history of diabetes. METHODS: A cross sectional study that included 712 healthy individuals living in Baghdad who accepted to take part in this study and fulfilling the inclusion and exclusion criteria.
... Show MoreWireless sensor networks (WSNs) represent one of the key technologies in internet of things (IoTs) networks. Since WSNs have finite energy sources, there is ongoing research work to develop new strategies for minimizing power consumption or enhancing traditional techniques. In this paper, a novel Gaussian mixture models (GMMs) algorithm is proposed for mobile wireless sensor networks (MWSNs) for energy saving. Performance evaluation of the clustering process with the GMM algorithm shows a remarkable energy saving in the network of up to 92%. In addition, a comparison with another clustering strategy that uses the K-means algorithm has been made, and the developed method has outperformed K-means with superior performance, saving ener
... Show More