Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep learning techniques, which were based on a convolutional neural network (CNN) or autoencoder, to extract features and combine them with the next step of the meta-heuristic algorithm in order to select optimal features using the particle swarm optimization (PSO) algorithm. This combination sought to reduce the dimensionality of the datasets while maintaining the original performance of the data. This is considered an innovative method and ensures highly accurate classification results across various medical datasets. Several classifiers were employed to predict the diseases. The COVID-19 dataset found that the highest accuracy was 99.76% using the combination of CNN-PSO-SVM. In comparison, the brain tumor dataset obtained 99.51% accuracy, the highest accuracy derived using the combination method of autoencoder-PSO-KNN.
Flexible molecular docking is a computational method of structure-based drug design to evaluate binding interactions between receptor and ligand and identify the ligand conformation within the receptor pocket. Currently, various molecular docking programs are extensively applied; therefore, realizing accuracy and performance of the various docking programs could have a significant value. In this comparative study, the performance and accuracy of three widely used non-commercial docking software (AutoDock Vina, 1-Click Docking, and UCSF DOCK) was evaluated through investigations of the predicted binding affinity and binding conformation of the same set of small molecules (HIV-1 protease inhibitors) and a protein target HIV-1 protease enzy
... Show MoreApart from graduating five-star doctors, a particular medical college has the mission to motivate and offer researchers the opportunity to publish high-quality researches on various health problems and disseminate updated medical knowledge to a wide range of local and international readers. This could be accomplished by establishing a medical journal and releasing issues regularly
BACKGROUND: Vaccine hesitancy and reluctant had an important obstacle in achieving protection and population immunity against coronavirus disease 19 (COVID-19). It is essential to achieve high COVID-19 vaccination acceptance rates among medical students and health care workers to provide recommendations and counseling vaccine hesitant population. AIM: This study aims to identify level of COVID-19 hesitancy, attitude, knowledge, and factors that affect vaccination decision. MATERIALS AND METHODS: A cross-sectional study was done among medical students in Al-Kindy College of Medicine, University of Baghdad, Baghdad, Iraq. Data collection was done through an online Google Forms questionnaire during 2021 from 810 medical students.
... Show MoreThe Internet of Things (IoT) is an information network that connects gadgets and sensors to allow new autonomous tasks. The Industrial Internet of Things (IIoT) refers to the integration of IoT with industrial applications. Some vital infrastructures, such as water delivery networks, use IIoT. The scattered topology of IIoT and resource limits of edge computing provide new difficulties to traditional data storage, transport, and security protection with the rapid expansion of the IIoT. In this paper, a recovery mechanism to recover the edge network failure is proposed by considering repair cost and computational demands. The NP-hard problem was divided into interdependent major and minor problems that could be solved in polynomial t
... Show MoreComputer systems and networks are increasingly used for many types of applications; as a result the security threats to computers and networks have also increased significantly. Traditionally, password user authentication is widely used to authenticate legitimate user, but this method has many loopholes such as password sharing, brute force attack, dictionary attack and more. The aim of this paper is to improve the password authentication method using Probabilistic Neural Networks (PNNs) with three types of distance include Euclidean Distance, Manhattan Distance and Euclidean Squared Distance and four features of keystroke dynamics including Dwell Time (DT), Flight Time (FT), mixture of (DT) and (FT), and finally Up-Up Time (UUT). The resul
... Show MoreThe biometric-based keys generation represents the utilization of the extracted features from the human anatomical (physiological) traits like a fingerprint, retina, etc. or behavioral traits like a signature. The retina biometric has inherent robustness, therefore, it is capable of generating random keys with a higher security level compared to the other biometric traits. In this paper, an effective system to generate secure, robust and unique random keys based on retina features has been proposed for cryptographic applications. The retina features are extracted by using the algorithm of glowworm swarm optimization (GSO) that provides promising results through the experiments using the standard retina databases. Additionally, in order t
... Show MoreDrug solubility and dissolution remain a significant challenge in pharmaceutical formulations. This study aimed to formulate and evaluate repanglinide (RPG) nanosuspension-based buccal fast-dissolving films (BDFs) for dissolution enhancement. RPG nanosuspension was prepared by the antisolvent-precipitation method using multiple hydrophilic polymers, including soluplus®, polyvinyl alcohol, polyvinyl pyrrolidine, poloxamers, and hydroxyl propyl methyl cellulose. The nanosuspension was then directly loaded into BDFs using the solvent casting technique. Twelve formulas were prepared with a particle size range of 81.6-1389 nm and PDI 0.002-1 for the different polymers. Nanosuspensions prepared with soluplus showed a favored mean particle size o
... Show More