Preferred Language
Articles
/
XRjSM5UBVTCNdQwCoSo1
A Novel Hybrid Machine Learning-Based System Using Deep Learning Techniques and Meta-Heuristic Algorithms for Various Medical Datatypes Classification
...Show More Authors

Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep learning techniques, which were based on a convolutional neural network (CNN) or autoencoder, to extract features and combine them with the next step of the meta-heuristic algorithm in order to select optimal features using the particle swarm optimization (PSO) algorithm. This combination sought to reduce the dimensionality of the datasets while maintaining the original performance of the data. This is considered an innovative method and ensures highly accurate classification results across various medical datasets. Several classifiers were employed to predict the diseases. The COVID-19 dataset found that the highest accuracy was 99.76% using the combination of CNN-PSO-SVM. In comparison, the brain tumor dataset obtained 99.51% accuracy, the highest accuracy derived using the combination method of autoencoder-PSO-KNN.

Scopus Clarivate Crossref
View Publication
Publication Date
Thu Jun 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
An optimized deep learning model for optical character recognition applications
...Show More Authors

The convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
A Hybrid Algorithms Based on the Aizawa Attractor and Rabbit-Lightweight Cipher for Image Encryption
...Show More Authors

     Social media and networks rely heavily on images. Those images should be distributed in a private manner. Image encryption is therefore one of the most crucial components of cyber security. In the present study, an effective image encryption technique is developed that combines the Rabbit Algorithm, a simple algorithm, with the Attractor of Aizawa, a chaotic map. The lightweight encryption algorithm (Rabbit Algorithm), which is a 3D dynamic system, is made more secure by the Attractor of Aizawa. The process separates color images into blocks by first dividing them into bands of red, green, and blue (RGB). The presented approach generates multiple keys, or sequences, based on the initial parameters and conditions, which are

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Mon Aug 01 2022
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
A survey of deepfakes in terms of deep learning and multimedia forensics
...Show More Authors

Artificial intelligence techniques are reaching us in several forms, some of which are useful but can be exploited in a way that harms us. One of these forms is called deepfakes. Deepfakes is used to completely modify video (or image) content to display something that was not in it originally. The danger of deepfake technology impact on society through the loss of confidence in everything is published. Therefore, in this paper, we focus on deepfakedetection technology from the view of two concepts which are deep learning and forensic tools. The purpose of this survey is to give the reader a deeper overview of i) the environment of deepfake creation and detection, ii) how deep learning and forensic tools contributed to the detection

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Al-khwarizmi Engineering Journal
Building a High Accuracy Transfer Learning-Based Quality Inspection System at Low Costs
...Show More Authors

      Products’ quality inspection is an important stage in every production route, in which the quality of the produced goods is estimated and compared with the desired specifications. With traditional inspection, the process rely on manual methods that generates various costs and large time consumption. On the contrary, today’s inspection systems that use modern techniques like computer vision, are more accurate and efficient. However, the amount of work needed to build a computer vision system based on classic techniques is relatively large, due to the issue of manually selecting and extracting features from digital images, which also produces labor costs for the system engineers.

  &nbsp

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Al-khwarizmi Engineering Journal
Building a High Accuracy Transfer Learning-Based Quality Inspection System at Low Costs
...Show More Authors

      Products’ quality inspection is an important stage in every production route, in which the quality of the produced goods is estimated and compared with the desired specifications. With traditional inspection, the process rely on manual methods that generates various costs and large time consumption. On the contrary, today’s inspection systems that use modern techniques like computer vision, are more accurate and efficient. However, the amount of work needed to build a computer vision system based on classic techniques is relatively large, due to the issue of manually selecting and extracting features from digital images, which also produces labor costs for the system engineers.       In this research, we pr

... Show More
Preview PDF
Crossref
Publication Date
Thu Jun 20 2019
Journal Name
Baghdad Science Journal
An Analysis on the Applicability of Meta-Heuristic Searching Techniques for Automated Test Data Generation in Automatic Programming Assessment
...Show More Authors

Automatic Programming Assessment (APA) has been gaining lots of attention among researchers mainly to support automated grading and marking of students’ programming assignments or exercises systematically. APA is commonly identified as a method that can enhance accuracy, efficiency and consistency as well as providing instant feedback on students’ programming solutions. In achieving APA, test data generation process is very important so as to perform a dynamic testing on students’ assignment. In software testing field, many researches that focus on test data generation have demonstrated the successful of adoption of Meta-Heuristic Search Techniques (MHST) so as to enhance the procedure of deriving adequate test data for efficient t

... Show More
View Publication Preview PDF
Crossref (2)
Clarivate Crossref
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
Word Embedding Methods for Word Representation in Deep Learning for Natural Language Processing
...Show More Authors

    Natural Language Processing (NLP) deals with analysing, understanding and generating languages likes human. One of the challenges of NLP is training computers to understand the way of learning and using a language as human.  Every training session consists of several types of sentences with different context and linguistic structures. Meaning of a sentence depends on actual meaning of main words with their correct positions. Same word can be used as a noun or adjective or others based on their position. In NLP, Word Embedding is a powerful method which is trained on large collection of texts and encoded general semantic and syntactic information of words. Choosing a right word embedding generates more efficient result than others

... Show More
View Publication Preview PDF
Scopus (23)
Crossref (15)
Scopus Crossref
Publication Date
Wed Mar 16 2022
Journal Name
International Journal Of Recent Contributions From Engineering, Science & It
Smart Learning based on Moodle E-learning Platform and Digital Skills for University Students
...Show More Authors

Publication Date
Mon Jan 01 2024
Journal Name
Fifth International Conference On Applied Sciences: Icas2023
A modified Mobilenetv2 architecture for fire detection systems in open areas by deep learning
...Show More Authors

This research describes a new model inspired by Mobilenetv2 that was trained on a very diverse dataset. The goal is to enable fire detection in open areas to replace physical sensor-based fire detectors and reduce false alarms of fires, to achieve the lowest losses in open areas via deep learning. A diverse fire dataset was created that combines images and videos from several sources. In addition, another self-made data set was taken from the farms of the holy shrine of Al-Hussainiya in the city of Karbala. After that, the model was trained with the collected dataset. The test accuracy of the fire dataset that was trained with the new model reached 98.87%.

Scopus Crossref
Publication Date
Sun May 01 2022
Journal Name
Journal Of Engineering
Performance Analysis of different Machine Learning Models for Intrusion Detection Systems
...Show More Authors

In recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve

... Show More
View Publication Preview PDF
Crossref (4)
Crossref