Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep learning techniques, which were based on a convolutional neural network (CNN) or autoencoder, to extract features and combine them with the next step of the meta-heuristic algorithm in order to select optimal features using the particle swarm optimization (PSO) algorithm. This combination sought to reduce the dimensionality of the datasets while maintaining the original performance of the data. This is considered an innovative method and ensures highly accurate classification results across various medical datasets. Several classifiers were employed to predict the diseases. The COVID-19 dataset found that the highest accuracy was 99.76% using the combination of CNN-PSO-SVM. In comparison, the brain tumor dataset obtained 99.51% accuracy, the highest accuracy derived using the combination method of autoencoder-PSO-KNN.
Lowering the emission, fuel economy and torque management are the essential
requirements in the recent development in the automobile industry. The main engine control
input that satisfies the above requirements is the throttling angle which adjusts the air mass
flow rate to the engine port. Due to the uncertainty and the presence of the nonlinear
components in its dynamical model, the sliding mode control theory is utilized in this work
for the throttle valve angle control system to design a robust controller for this system in the
presence of a nonlinear spring and Coulomb friction. A continuous sliding mode control law
which consists of a saturation function, instead of a signum function, and the integral of
ano
A concept of indoor solar illumination is described and simulated. The solar illumination system is composed of a tracking primary reflector, a selective secondary reflector, a visible light guide and a scattering solid glass tube fixture. Each part of the solar illumination system is optically suited and compatible with other parts to realize high efficiency. The simulation is conducted for Baghdad city for a library hall. Two major days over a year are chosen to investigate the illumination system for acceptable visible light level for reading hall. The two days are: summer solstice day and winter solstice day at 8:00 AM and 12:00 PM for each. Research results showed that the design of the solar system is achieved on the base of minimu
... Show MoreThe performance of a solar assisted desiccant cooling system for a meeting-hall located in the College of Engineering/University of Baghdad was evaluated theoretically. The system was composed of four components; a solar air heater, a desiccant dehumidifier, a heat exchanger and an evaporative cooler. A computer simulation was developed by using MATLAB to assess the effect of various design and operating conditions on the performance of the system and its components. The actual weather data on recommended days were used to assess the load variation and the system performance during those days. The radiant time series method (RTS) was used to evaluate the hourly variation of the cooling load. Four operation modes were employed for perform
... Show MoreIn the image processing’s field and computer vision it’s important to represent the image by its information. Image information comes from the image’s features that extracted from it using feature detection/extraction techniques and features description. Features in computer vision define informative data. For human eye its perfect to extract information from raw image, but computer cannot recognize image information. This is why various feature extraction techniques have been presented and progressed rapidly. This paper presents a general overview of the feature extraction categories for image.
Sensitive information of any multimedia must be encrypted before transmission. The dual chaotic algorithm is a good option to encrypt sensitive information by using different parameters and different initial conditions for two chaotic maps. A dual chaotic framework creates a complex chaotic trajectory to prevent the illegal use of information from eavesdroppers. Limited precisions of a single chaotic map cause a degradation in the dynamical behavior of the communication system. To overcome this degradation issue in, a novel form of dual chaos map algorithm is analyzed. To maintain the stability of the dynamical system, the Lyapunov Exponent (LE) is determined for the single and dual maps. In this paper, the LE of the single and dual maps
... Show More