Preferred Language
Articles
/
XRgbYZQBVTCNdQwCZxSu
Detection Of Biofilm Formation By Beta- Lactam Resistance Klebsiella Pneumoniae Isolated From Clinical Specimens And Aquatic Samples
...Show More Authors

Preview PDF
Quick Preview PDF
Publication Date
Sun Aug 01 2021
Journal Name
Journal Of Engineering
Practical comparation of the accuracy and speed of YOLO, SSD and Faster RCNN for drone detection
...Show More Authors

Convolutional Neural Networks (CNN) have high performance in the fields of object recognition and classification. The strength of CNNs comes from the fact that they are able to extract information from raw-pixel content and learn features automatically. Feature extraction and classification algorithms can be either hand-crafted or Deep Learning (DL) based. DL detection approaches can be either two stages (region proposal approaches) detector or a single stage (non-region proposal approach) detector. Region proposal-based techniques include R-CNN, Fast RCNN, and Faster RCNN. Non-region proposal-based techniques include Single Shot Detector (SSD) and You Only Look Once (YOLO). We are going to compare the speed and accuracy of Faster RCNN,

... Show More
View Publication Preview PDF
Crossref (31)
Crossref
Publication Date
Mon Mar 15 2021
Journal Name
Al-academy
Effect of formation Methods on Sintering Process of Ceramic Materials: هديل سلمان سعيد
...Show More Authors

The current research is concerned with methods of formation and their effect on the sintering process of ceramic materials. The research is divided into a number of chapters. The first chapter addressed the research structure (the research problem, importance, objective, limits, and it also defined the terms used in the research). The second chapter addressed the theoretical framework, where the theoretical framework has been divided into three sections. The first section dealt with methods of formation of ceramic materials including: Plasticizing method 2- semi-dry pressing method 3- dry pressing method 4- extrusion method 5- casting method.
The researcher found that there is a clear difference between the methods through her formati

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Mar 30 2025
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Determination of petrophysical properties of Sadi Formation in Halfaya oil field, southern Iraq
...Show More Authors

   This study aimed to evaluate the reservoir petrophysical properties (porosity, water saturation, and permeability) for optimal flow unit assessment within the Sadi Formation. Utilizing open hole logging data from five wells, the Sadi formation was divided into two rock units. The upper unit (A) is 45-50 meters thick, mainly consisting of limestone, mainly consisting of shaly limestone at the lower part. The lower unit (B) has a thickness of approximately 75-80 meters and is primarily composed of limestone, further subdivided into three subunits (B1, B2, B3). The average water resistivity is 0.04 ohm-m, and the average mud filtrate resistivity is 0.06 ohm-m. The Pickett plot was utilized to determine Archie parameters (tortuosit

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Iraqi Journal Of Physics
Assessment of the Natural Radioactivity Levels of Soil Samples in IT1 Oil Reservoirs in Kirkuk City, Northeast Iraq
...Show More Authors

In this study, gamma-ray spectrometry with an HPGe detector was used to measure the specific activity concentrations of 226Ra, 232Th, and 40K in soil samples collected from IT1 oil reservoirs in Kirkuk city, northeast Iraq. The “spectral line Gp” gamma analysis software package was used to analyze the spectral data. 226Ra specific activity varies from 9  0.34 Bq.kg-1 to 17  0.47 Bq.kg-1. 232Th specific activity varies from 6.2  0.08 Bq.kg-1 to 18  0.2 Bq.kg-1. 40K specific activity varies from 25  0.19 Bq.kg-1 to 118  0.41 Bq.kg-1. The radiological hazard due to the radiation emitted from natural r

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Jun 24 2015
Journal Name
Chinese Journal Of Biomedical Engineering
Single Channel Fetal ECG Detection Using LMS and RLS Adaptive Filters
...Show More Authors

ECG is an important tool for the primary diagnosis of heart diseases, which shows the electrophysiology of the heart. In our method, a single maternal abdominal ECG signal is taken as an input signal and the maternal P-QRS-T complexes of original signal is averaged and repeated and taken as a reference signal. LMS and RLS adaptive filters algorithms are applied. The results showed that the fetal ECGs have been successfully detected. The accuracy of Daisy database was up to 84% of LMS and 88% of RLS while PhysioNet was up to 98% and 96% for LMS and RLS respectively.

Publication Date
Wed Dec 13 2023
Journal Name
2023 3rd International Conference On Intelligent Cybernetics Technology & Applications (icicyta)
GPT-4 versus Bard and Bing: LLMs for Fake Image Detection
...Show More Authors

The recent emergence of sophisticated Large Language Models (LLMs) such as GPT-4, Bard, and Bing has revolutionized the domain of scientific inquiry, particularly in the realm of large pre-trained vision-language models. This pivotal transformation is driving new frontiers in various fields, including image processing and digital media verification. In the heart of this evolution, our research focuses on the rapidly growing area of image authenticity verification, a field gaining immense relevance in the digital era. The study is specifically geared towards addressing the emerging challenge of distinguishing between authentic images and deep fakes – a task that has become critically important in a world increasingly reliant on digital med

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (3)
Scopus Crossref
Publication Date
Wed Nov 30 2022
Journal Name
Iraqi Journal Of Science
Breast Cancer Detection using Decision Tree and K-Nearest Neighbour Classifiers
...Show More Authors

      Data mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the  most effective parameter, particularly when Age<49.5. Whereas  Ki67  appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimu

... Show More
Scopus (14)
Crossref (8)
Scopus Crossref
Publication Date
Fri Dec 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Multi – Linear in Multiple Nonparametric Regression , Detection and Treatment Using Simulation
...Show More Authors

             It is the regression analysis is the foundation stone of knowledge of statistics , which mostly depends on the ordinary least square method , but as is well known that the way the above mentioned her several conditions to operate accurately and the results can be unreliable , add to that the lack of certain conditions make it impossible to complete the work and analysis method and among those conditions are the multi-co linearity problem , and we are in the process of detected that problem between the independent variables using farrar –glauber test , in addition to the requirement linearity data and the lack of the condition last has been resorting to the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 07 2021
Journal Name
Jurnal Teknologi
MODELS, DETECTION METHODS, AND CHALLENGES IN DC ARC FAULT: A REVIEW
...Show More Authors

The power generation of solar photovoltaic (PV) technology is being implemented in every nation worldwide due to its environmentally clean characteristics. Therefore, PV technology is significantly growing in the present applications and usage of PV power systems. Despite the strength of the PV arrays in power systems, the arrays remain susceptible to certain faults. An effective supply requires economic returns, the security of the equipment and humans, precise fault identification, diagnosis, and interruption tools. Meanwhile, the faults in unidentified arc lead to serious fire hazards to commercial, residential, and utility-scale PV systems. To ensure secure and dependable distribution of electricity, the detection of such ha

... Show More
View Publication
Scopus (11)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Mon Dec 14 2020
Journal Name
2020 13th International Conference On Developments In Esystems Engineering (dese)
Anomaly Based Intrusion Detection System Using Hierarchical Classification and Clustering Techniques
...Show More Authors

With the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect

... Show More
View Publication
Scopus (4)
Crossref (5)
Scopus Clarivate Crossref