With the escalation of cybercriminal activities, the demand for forensic investigations into these crimeshas grown significantly. However, the concept of systematic pre-preparation for potential forensicexaminations during the software design phase, known as forensic readiness, has only recently gainedattention. Against the backdrop of surging urban crime rates, this study aims to conduct a rigorous andprecise analysis and forecast of crime rates in Los Angeles, employing advanced Artificial Intelligence(AI) technologies. This research amalgamates diverse datasets encompassing crime history, varioussocio-economic indicators, and geographical locations to attain a comprehensive understanding of howcrimes manifest within the city. Leveraging sophisticated AI algorithms, the study focuses on scrutinizingsubtle periodic patterns and uncovering relationships among the collected datasets. Through thiscomprehensive analysis, the research endeavors to pinpoint crime hotspots, detect fluctuations infrequency, and identify underlying causes of criminal activities. Furthermore, the research evaluates theefficacy of the AI model in generating productive insights and providing the most accurate predictionsof future criminal trends. These predictive insights are poised to revolutionize the strategies of lawenforcement agencies, enabling them to adopt proactive and targeted approaches. Emphasizing ethicalconsiderations, this research ensures the continued feasibility of AI use while safeguarding individuals'constitutional rights, including privacy. The anticipated outcomes of this research are anticipated tofurnish actionable intelligence for law enforcement, policymakers, and urban planners, aiding in theidentification of effective crime prevention strategies. By harnessing the potential of AI, this researchcontributes to the promotion of proactive strategies and data-driven models in crime analysis andprediction, offering a promising avenue for enhancing public security in Los Angeles and othermetropolitan areas.
The process of soil classification in Iraq for industrial purposes is important topics that need to be extensive and specialized studies. In order for the advancement of reality service and industrial in our dear country, that a lot of scientific research touched upon the soil classification in the agricultural, commercial and other fields. No source and research can be found that touched upon the classification of land for industrial purposes directly. In this research specialized programs have been used such as geographic information system software The geographical information system permits the study of local distribution of phenomena, activities and the aims that can be determined in the loca
Different frequency distributions models were fitted to the monthly data of raw water Turbidity at water treatment plants (WTPs) along Tigris River in Baghdad. Eight water treatment plants in Baghdad were selected, with raw water turbidity data for the period (2008-2014). The frequency distribution models used in this study are the Normal, Log-normal, Weibull, Exponential and two parameters Gamma type. The Kolmogorov-Smirnov test was used to evaluate the goodness of fit. The data for years (2008-2011) were used for building the models. The best fitted distributions were Log-Normal (LN) for Al-Karkh, Al-Wathbah, Al-Qadisiya, Al-Dawrah and, Al-Rashid WTPs. Gamma distribution fitted well for East Tigris and Al-Karamah
... Show MoreDifferent frequency distributions models were fitted to the monthly data of raw water Turbidity at water treatment plants (WTPs) along Tigris River in Baghdad. Eight water treatment plants in Baghdad were selected, with raw water turbidity data for the period (2008-2014). The frequency distribution models used in this study are the Normal, Log-normal, Weibull, Exponential and two parameters Gamma type. The Kolmogorov-Smirnov test was used to evaluate the goodness of fit. The data for years (2008-2011) were used for building the models. The best fitted distributions were Log-Normal (LN) for Al-Karkh, Al-Wathbah, Al-Qadisiya, Al- Dawrah and, Al-Rashid WTPs. Gamma distribution fitted well for East Tigris and Al-Karamah WTPs. As for Al-
... Show MoreUtilizing the modern technologies in agriculture such as subsurface water retention techniques were developed to improve water storage capacities in the root zone depth. Moreover, this technique was maximizing the reduction in irrigation losses and increasing the water use efficiency. In this paper, a polyethylene membrane was installed within the root zone of okra crop through the spring growing season 2017 inside the greenhouse to improve water use efficiency and water productivity of okra crop. The research work was conducted in the field located in the north of Babylon Governorate in Sadat Al Hindiya Township seventy-eight kilometers from Baghdad city. Three treatments plots were used for the comparison using surface
... Show MoreSewer sediment deposition is an important aspect as it relates to several operational and environmental problems. It concerns municipalities as it affects the sewer system and contributes to sewer failure which has a catastrophic effect if happened in trunks or interceptors. Sewer rehabilitation is a costly process and complex in terms of choosing the method of rehabilitation and individual sewers to be rehabilitated. For such a complex process, inspection techniques assist in the decision-making process; though, it may add to the total expenditure of the project as it requires special tools and trained personnel. For developing countries, Inspection could prohibit the rehabilitation proceeds. In this study, the researchers propos
... Show MoreIn the present investigation, 24 adult dipteran species with forensic importance belonging to 13 genera and 8 families that were collected from different localities of Iraq. The specimens were identified by different taxonomical keys; in addition the date and localities of collecting specimens were recorded.
Machine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To
... Show MoreThe study aims (objective ) to clarify the concept of comprehensive income and its usefulness for users, as the study aims to clarify the relationship between the concept of comprehensive income and market value of the company where the measurement of comprehensive income after accounting for net income and by measuring the unrealized gains or losses in the value of securities available for sale, and measurement the unrealized gains or losses on futures contracts, which are financial derivatives, and measurement the unrealized gains or losses from the settlement of foreign currency translation (conversions), and measurement the impact on the market value of companies and of the present study to rise or fall of return on the stock
... Show More