With the escalation of cybercriminal activities, the demand for forensic investigations into these crimeshas grown significantly. However, the concept of systematic pre-preparation for potential forensicexaminations during the software design phase, known as forensic readiness, has only recently gainedattention. Against the backdrop of surging urban crime rates, this study aims to conduct a rigorous andprecise analysis and forecast of crime rates in Los Angeles, employing advanced Artificial Intelligence(AI) technologies. This research amalgamates diverse datasets encompassing crime history, varioussocio-economic indicators, and geographical locations to attain a comprehensive understanding of howcrimes manifest within the city. Leveraging sophisticated AI algorithms, the study focuses on scrutinizingsubtle periodic patterns and uncovering relationships among the collected datasets. Through thiscomprehensive analysis, the research endeavors to pinpoint crime hotspots, detect fluctuations infrequency, and identify underlying causes of criminal activities. Furthermore, the research evaluates theefficacy of the AI model in generating productive insights and providing the most accurate predictionsof future criminal trends. These predictive insights are poised to revolutionize the strategies of lawenforcement agencies, enabling them to adopt proactive and targeted approaches. Emphasizing ethicalconsiderations, this research ensures the continued feasibility of AI use while safeguarding individuals'constitutional rights, including privacy. The anticipated outcomes of this research are anticipated tofurnish actionable intelligence for law enforcement, policymakers, and urban planners, aiding in theidentification of effective crime prevention strategies. By harnessing the potential of AI, this researchcontributes to the promotion of proactive strategies and data-driven models in crime analysis andprediction, offering a promising avenue for enhancing public security in Los Angeles and othermetropolitan areas.
This research involves design and simulation of GaussianFSK transmitter in UHF band using direct modulation of ΣΔ fractional-N synthesizer with the following specifications:
Frequency range (869.9– 900.4) MHz, data rate 150kbps, channel spacing (500 kHz), Switching time 1 µs, & phase noise @10 kHz = -85dBc.
New circuit techniques have been sought to allow increased integration of radio transmitters and receivers, along with new radio architectures that take advantage of such techniques. Characteristics such as low power operation, small size, and low cost have become the dominant design criteria by which these systems are judged.
A direct modulation by ΣΔ fractional-N synthesizer is proposed
... Show MoreThe objective of this study is to apply Artificial Neural Network for heat transfer analysis of shell-and-tube heat exchangers widely used in power plants and refineries. Practical data was obtained by using industrial heat exchanger operating in power generation department of Dura refinery. The commonly used Back Propagation (BP) algorithm was used to train and test networks by divided the data to three samples (training, validation and testing data) to give more approach data with actual case. Inputs of the neural network include inlet water temperature, inlet air temperature and mass flow rate of air. Two outputs (exit water temperature to cooling tower and exit air temperature to second stage of air compressor) were taken in ANN.
... Show MoreContamination of surface and groundwater with excessive concentrations of fluoride is of significant health hazard. Adsorption of fluoride onto waste materials of no economic value could be a potential approach for the treatment of fluoride-bearing water. This experimental and modeling study was devoted to investigate for the first the fluoride removal using unmodified waste granular brick (WGB) in a fixed bed running in continuous mode. Characterization of WGB was carried out by FT-IR, SEM, and EDX analysis. The batch mode experiments showed that they were affected by several parameters including contact time, initial pH, and sorbent dosage. The best values of these parameters that provided maximum removal percent (82%) with the in
... Show MoreCutaneous leishmaniasis is one of endemic diseases in Iraq. It is considered as widely health problem and is an uncontrolled disease. The aim of the study is to identify of Leishmania species that cause skin lesions among patients in Thi-Qar Province, South of Iraq, also to detect some virulence factors of L. tropica. This study includes three local locations, Al-Hussein Teaching, Suq Al-Shyokh General and Al-Shatrah General Hospitals in Province for the period from the beginning of December 2018 to the end of September 2019. The samples were collected from 80 patients suffering from cutaneous leishmaniasis, both genders, different ages, various residence places and single and multiple lesions. Nested-PCR technique was
... Show MoreBackground: The quantity and the quality of available bone, influence the clinical success of dental implants surgery. Cone beam Computed tomography is an established method for acquiring bone images before performing dental implant. Cone beam computed tomography is an essential tool for treatment planning and post-surgical procedure monitoring, by providing highly accurate 3-D images of the patient's anatomy from a single, low-radiation scan which yields high resolution images with favorable accuracy. The aim of study is the Measurement of alveolar bone (height and buccolingual width) and density in the mandible among Iraqi adult subject using CBCT for assessment of dental implant site dimensions. Material and method: The study sample in
... Show MoreAmputation of the upper limb significantly hinders the ability of patients to perform activities of daily living. To address this challenge, this paper introduces a novel approach that combines non-invasive methods, specifically Electroencephalography (EEG) and Electromyography (EMG) signals, with advanced machine learning techniques to recognize upper limb movements. The objective is to improve the control and functionality of prosthetic upper limbs through effective pattern recognition. The proposed methodology involves the fusion of EMG and EEG signals, which are processed using time-frequency domain feature extraction techniques. This enables the classification of seven distinct hand and wrist movements. The experiments conducte
... Show MoreA taxonomic keys was established of book and bark lice Order Psocoptera to isolated insects in Iraq from different localities of Baghdad and Babylon provinces. Thirteen species belong to eight genera and five families have been studied and described in details, these species were recorded for the first time in Iraq. These species are: Belaphopsocus badonneli New, 1971; Belaphotroctes oculeris Bodonnel, 1973; Embodopsocosis newi Bodonnel, 1973; Epipsocus stigamaticus Mockeord, 1991; Lepinotus huoni Schmidt and New, 2008; Liposcelies decolor Peramane 1925 Liposcelies paeta Pearman 1942 Liposclies bostrychphila Badonnel 1931; Liposclies brunnea Mostchulsky 1852; Liposclies entoophila Enderlein 1907; Neopsocopsis minuscule Li 2002 ;
... Show MoreTo perform a secure evaluation of Indoor Design data, the research introduces a Cyber-Neutrosophic Model, which utilizes AES-256 encryption, Role-Based Access Control, and real-time anomaly detection. It measures the percentage of unpredictability, insecurity, and variance present within model features. Also, it provides reliable data security. Similar features have been identified between the final results of the study, corresponding to the Cyber-Neutrosophic Model analysis, and the cybersecurity layer helped mitigate attacks. It is worth noting that Anomaly Detection successfully achieved response times of less than 2.5 seconds, demonstrating that the model can maintain its integrity while providing privacy. Using neutrosophic sim
... Show More