With the escalation of cybercriminal activities, the demand for forensic investigations into these crimeshas grown significantly. However, the concept of systematic pre-preparation for potential forensicexaminations during the software design phase, known as forensic readiness, has only recently gainedattention. Against the backdrop of surging urban crime rates, this study aims to conduct a rigorous andprecise analysis and forecast of crime rates in Los Angeles, employing advanced Artificial Intelligence(AI) technologies. This research amalgamates diverse datasets encompassing crime history, varioussocio-economic indicators, and geographical locations to attain a comprehensive understanding of howcrimes manifest within the city. Leveraging sophisticated AI algorithms, the study focuses on scrutinizingsubtle periodic patterns and uncovering relationships among the collected datasets. Through thiscomprehensive analysis, the research endeavors to pinpoint crime hotspots, detect fluctuations infrequency, and identify underlying causes of criminal activities. Furthermore, the research evaluates theefficacy of the AI model in generating productive insights and providing the most accurate predictionsof future criminal trends. These predictive insights are poised to revolutionize the strategies of lawenforcement agencies, enabling them to adopt proactive and targeted approaches. Emphasizing ethicalconsiderations, this research ensures the continued feasibility of AI use while safeguarding individuals'constitutional rights, including privacy. The anticipated outcomes of this research are anticipated tofurnish actionable intelligence for law enforcement, policymakers, and urban planners, aiding in theidentification of effective crime prevention strategies. By harnessing the potential of AI, this researchcontributes to the promotion of proactive strategies and data-driven models in crime analysis andprediction, offering a promising avenue for enhancing public security in Los Angeles and othermetropolitan areas.
The method binery logistic regression and linear discrimint function of the most important statistical methods used in the classification and prediction when the data of the kind of binery (0,1) you can not use the normal regression therefore resort to binary logistic regression and linear discriminant function in the case of two group in the case of a Multicollinearity problem between the data (the data containing high correlation) It became not possible to use binary logistic regression and linear discriminant function, to solve this problem, we resort to Partial least square regression.
In this, search the comparison between binary lo
... Show MoreCognitive stylistics also well-known as cognitive poetics is a cognitive approach to language. This study aims at examining literary language by showing how Schema Theory and Text World Theory can be useful in the interpretation of literary texts. Further, the study attempts to uncover how readers can connect between the text world and the real world. Putting it differently, the study aims at showing how the interaction between ‘discourse world’ and ‘text world’. How readers can bring their own experience as well as their background knowledge to interact with the text and make interpretive connections.
Schema and text world theories are useful tools in cognitive stylistic stud
... Show MoreIn this paper, fire resistance and residual capacity tests were carried out on encased pultruded glass fiber-reinforced polymer (GFRP) I-beams with high-strength concrete beams. The specimens were loaded concurrently under 25% of the ultimate load and fire exposure (an increase in temperature of 700 °C) for 70 min. Subsequently, the fire-damaged specimens were allowed to cool and then were loaded statically until failure to explore the residual behaviors. The effects of using shear connectors and web stiffeners on the residual behavior were investigated. Finite Element (FE) analysis was developed to simulate the encased pultruded GFRP I-beams under the effect of fire loading. The thermal analyses were performed using the general-pu
... Show Moreليكاند ازو جديد. 4-((3-formyl-2-hydroxyphenyl)diazenyl)-N-(5-methylisoxazol-3-yl)benzenesulfonamide, الليكاند المحضر استعمل لتحضير معقدات من ايونات معادن مختلفة مثل الكروم الثلاثي والمنغنيز الثنائي والحديد الثلاثي والبلاديوم الثنائي بنسب مولية (1:1) ( ليكاند : فلز) نتائج التشخيص للمركبات يتقنيات مطيافية الاشعة فوق البنفسجية الاشعة تحت الحمراء الرنين النووي المغناطيسي البروتوني والكربوني وطيف الكتلة والتحليل الدقيق للعناصر ومحتوى الفلز وال
... Show MoreA mathematical model has been introduced to investigate the effect of nuclear reaction constant ( A ), probability of the BEC ground state occupation Ω i, nD is the number density of deuteron (d) and the overall number of nuclei ND on the total nuclear d-d fusion rate (R). Under steady-state of the condensates of Bose-Einstein, the postulate of quantum theory and Bose-Einstein theory were applied to evaluate the total nuclear (d-d) fusion rate trapping in Nickel-metal The total nuclear fusion rate trapping predicts a strong relationship between astrophysical S-factor and masses of Nickel. The reaction rate trapping model was tested on three reaction d(d,p)T, d(d, n)3He and d(d, 4He)Q = 23.8MeV respectively. The reaction rate has described
... Show MoreThe intelligent buildings provided various incentives to get highly inefficient energy-saving caused by the non-stationary building environments. In the presence of such dynamic excitation with higher levels of nonlinearity and coupling effect of temperature and humidity, the HVAC system transitions from underdamped to overdamped indoor conditions. This led to the promotion of highly inefficient energy use and fluctuating indoor thermal comfort. To address these concerns, this study develops a novel framework based on deep clustering of lagrangian trajectories for multi-task learning (DCLTML) and adding a pre-cooling coil in the air handling unit (AHU) to alleviate a coupling issue. The proposed DCLTML exhibits great overall control and is
... Show More