Preferred Language
Articles
/
XRfJoo8BVTCNdQwCv3wS
Using Information Technology for Comprehensive Analysis and Prediction in Forensic Evidence
...Show More Authors

With the escalation of cybercriminal activities, the demand for forensic investigations into these crimeshas grown significantly. However, the concept of systematic pre-preparation for potential forensicexaminations during the software design phase, known as forensic readiness, has only recently gainedattention. Against the backdrop of surging urban crime rates, this study aims to conduct a rigorous andprecise analysis and forecast of crime rates in Los Angeles, employing advanced Artificial Intelligence(AI) technologies. This research amalgamates diverse datasets encompassing crime history, varioussocio-economic indicators, and geographical locations to attain a comprehensive understanding of howcrimes manifest within the city. Leveraging sophisticated AI algorithms, the study focuses on scrutinizingsubtle periodic patterns and uncovering relationships among the collected datasets. Through thiscomprehensive analysis, the research endeavors to pinpoint crime hotspots, detect fluctuations infrequency, and identify underlying causes of criminal activities. Furthermore, the research evaluates theefficacy of the AI model in generating productive insights and providing the most accurate predictionsof future criminal trends. These predictive insights are poised to revolutionize the strategies of lawenforcement agencies, enabling them to adopt proactive and targeted approaches. Emphasizing ethicalconsiderations, this research ensures the continued feasibility of AI use while safeguarding individuals'constitutional rights, including privacy. The anticipated outcomes of this research are anticipated tofurnish actionable intelligence for law enforcement, policymakers, and urban planners, aiding in theidentification of effective crime prevention strategies. By harnessing the potential of AI, this researchcontributes to the promotion of proactive strategies and data-driven models in crime analysis andprediction, offering a promising avenue for enhancing public security in Los Angeles and othermetropolitan areas.

Scopus Crossref
View Publication
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Engineering
Prediction of Monthly Fluoride Content in Tigris River using SARIMA Model in R Software
...Show More Authors

The need to create the optimal water quality management process has motivated researchers to pursue prediction modeling development. One of the widely important forecasting models is the sessional autoregressive integrated moving average (SARIMA) model. In the present study, a SARIMA model was developed in R software to fit a time series data of monthly fluoride content collected from six stations on Tigris River for the period from 2004 to 2014. The adequate SARIMA model that has the least Akaike's information criterion (AIC) and mean squared error (MSE) was found to be SARIMA (2, 0, 0) (0,1,1). The model parameters were identified and diagnosed to derive the forecasting equations at each selected location. The correlat

... Show More
View Publication Preview PDF
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Engineering
Prediction of Monthly Fluoride Content in Tigris River using SARIMA Model in R Software
...Show More Authors

The need to create the optimal water quality management process has motivated researchers to pursue prediction modeling development. One of the widely important forecasting models is the sessional autoregressive integrated moving average (SARIMA) model. In the present study, a SARIMA model was developed in R software to fit a time series data of monthly fluoride content collected from six stations on Tigris River for the period from 2004 to 2014. The adequate SARIMA model that has the least Akaike's information criterion (AIC) and mean squared error (MSE) was found to be SARIMA (2,0,0) (0,1,1). The model parameters were identified and diagnosed to derive the forecasting equations at each selected location. The correlation coefficien

... Show More
Publication Date
Wed Jun 01 2022
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
American Standard Code for Information Interchange mapping technique for text hiding in the RGB and gray images
...Show More Authors

Publication Date
Tue Jan 01 2019
Journal Name
Advances In Informatics And Computing In Civil And Construction Engineering: Proceedings Of The 35th Cib W78 2018 Conference: It In Design, Construction, And Management
Technology alternatives for workplace safety risk mitigation in construction: Exploratory study
...Show More Authors

Publication Date
Tue Jan 01 2019
Journal Name
Marine And Petroleum Geology
Geophysical evidence for structurally-controlled, authigenic carbonate cementation in the Laminaria High, Bonaparte basin, Northwest Shelf of Australia
...Show More Authors

View Publication
Scopus (4)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat Feb 02 2019
Journal Name
Journal Of The College Of Education For Women
The Information Effect in Iraqi Universities: The Information Effect in Iraqi Universities
...Show More Authors

Abstract:
This research (The effect of information in Iraqi universities) wants to
explain the aims and the opinions of Iraqi universities lecturers during the
globalization era and information technology .
The results we have got about using the computers by the lecturers of
Iraqi universities just in illustration and statistic as depends on there works

View Publication Preview PDF
Publication Date
Sun Mar 26 2017
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Evaluation of Poisoning Cases in the Poisoning Consultation Center and Forensic Medicine Institute within Baghdad area
...Show More Authors

Social factors may affect the available sources of toxic substances and causes of poisoning, and these factors may change over time. Additionally, understanding the characteristics of poisoning cases is important for treating such patients. Therefore, the present study investigated the characteristics of poisoning cases in Baghdad Poisoning Consultation Center (PCC) and Forensic Medicine Institute (FMI). Data on all poisoning cases reported in PCC and FMI during 2013 were retrospectively obtained from medical records. Total of 1131 reports of poisoning cases (1082 from PCC and 49 from FMI) were analyzed according to age, sex, geographical distribution and causes of poisoning according to the type and class of poisoning agent. The results

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Spatial Prediction of Monthly Precipitation in Sulaimani Governorate using Artificial Neural Network Models
...Show More Authors

ANN modeling is used here to predict missing monthly precipitation data in one station of the eight weather stations network in Sulaimani Governorate. Eight models were developed, one for each station as for prediction. The accuracy of prediction obtain is excellent with correlation coefficients between the predicted and the measured values of monthly precipitation ranged from (90% to 97.2%). The eight ANN models are found after many trials for each station and those with the highest correlation coefficient were selected. All the ANN models are found to have a hyperbolic tangent and identity activation functions for the hidden and output layers respectively, with learning rate of (0.4) and momentum term of (0.9), but with different data

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Civil And Environmental Engineering
Prediction of the Delay in the Portfolio Construction Using Naïve Bayesian Classification Algorithms
...Show More Authors
Abstract<p>Projects suspensions are between the most insistent tasks confronted by the construction field accredited to the sector’s difficulty and its essential delay risk foundations’ interdependence. Machine learning provides a perfect group of techniques, which can attack those complex systems. The study aimed to recognize and progress a wellorganized predictive data tool to examine and learn from delay sources depend on preceding data of construction projects by using decision trees and naïve Bayesian classification algorithms. An intensive review of available data has been conducted to explore the real reasons and causes of construction project delays. The results show that the postpo</p> ... Show More
Scopus (9)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Fluid Phase Equilibria
Prediction of solubility of vitamins in the mixed solvents using equation of state
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref