Preferred Language
Articles
/
XRd_XI8BVTCNdQwCwW6-
Effect of reduced graphene oxide hybridization on ZnO nanoparticles sensitivity to NO2 gas: A DFT study
...Show More Authors

In the present work, a density functional theory (DFT) calculation to simulate reduced graphene oxide (rGO) hybrid with zinc oxide (ZnO) nanoparticle's sensitivity to NO2 gas is performed. In comparison with the experiment, DFT calculations give acceptable results to available bond lengths, lattice parameters, X-ray photoelectron spectroscopy (XPS), energy gaps, Gibbs free energy, enthalpy, entropy, etc. to ZnO, rGO, and ZnO/rGO hybrid. ZnO and rGO show n-type and p-type semiconductor behavior, respectively. The formed p-n heterojunction between rGO and ZnO is of the staggering gap type. Results show that rGO increases the sensitivity of ZnO to NO2 gas as they form a hybrid. ZnO/rGO hybrid has a higher number of vacancies that can be used to attract oxygen atoms from NO2 and change the resistivity of the hybrid. The combined reduction of oxygen from NO2 and NO can give a very high value of the Gibbs free energy of reaction that explains the ppb level sensitivity of the ZnO/rGO hybrid. The dissociation of NO2 in the air reduces the sensitivity of the ZnO/rGO hybrid at temperatures higher than 300 ̊C.

Scopus Clarivate Crossref
View Publication
Publication Date
Mon Mar 01 2021
Journal Name
Materials Science Forum
Thermophysical Properties for ZnO-Water Nanofluid: Experimental Study
...Show More Authors

This paper presents the thermophysical properties of zinc oxide nanofluid that have been measured for experimental investigation. The main contribution of this study is to define the heat transfer characteristics of nanofluids. The measuring of these properties was carried out within a range of temperatures from 25 °C to 45 °C, volume fraction from 1 to 2 %, and the average nanoparticle diameter size is 25 nm, and the base fluid is water. The thermophysical properties, including viscosity and thermal conductivity, were measured by using Brookfield rotational Viscometer and Thermal Properties Analyzer, respectively. The result indicates that the thermophysical properties of zinc oxide nanofluid increasing with nanoparticle volume f

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Iraqi Journal Of Physics
Effect of Transition Metal Dopant on the Electrical Properties of ZnO-TiO2 Films Prepared by PLD Technique
...Show More Authors

In this article, the influence of group nano transition metal oxides such as {(MnO2), (Fe2O3) and (CuO)} thin films on the (ZnO-TiO2) electric characteristics have been analyzed. The prepared films deposited on glass substrate laser Nd-YAG with wavelength (ℷ =1064 nm) ,energy of (800mJ) and number of shots (400). The density of the film was found to be (200 nm) at room temperature (RT) and annealing temperature (573K).Using DC Conductivity and Hall Effect, we obtained the electrical properties of the films. The DC Conductivity shows that that the activation energies decrease while the σRT at annealing temperature with different elements increases the formation of mixed oxides. The Hall effect, the elec

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Canadian Journal Of Chemistry
Hydrogenation of pyridine and hydrogenolysis of piperidine over <i>γ-</i>Mo<sub>2</sub>N catalyst: a DFT study
...Show More Authors

Increasing demands on producing environmentally friendly products are becoming a driving force for designing highly active catalysts. Thus, surfaces that efficiently catalyse the nitrogen reduction reactions are greatly sought in moderating air-pollutant emissions. This contribution aims to computationally investigate the hydrodenitrogenation (HDN) networks of pyridine over the γ-Mo2N(111) surface using a density functional theory (DFT) approach. Various adsorption configurations have been considered for the molecularly adsorbed pyridine. Findings indicate that pyridine can be adsorbed via side-on and end-on modes in six geometries in which one adsorption site is revealed to have the lowest adsorption energy (

... Show More
View Publication
Crossref (5)
Crossref
Publication Date
Thu Oct 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Investigating the Structural and Magnetic Properties of Nickel Oxide Nanoparticles Prepared by Precipitation Method
...Show More Authors

This work used the deposition method to synthesize nickel oxide nanoparticles. The materials mainly used in this study were nickel sulfate hexahydrate (as a precursor) and NaOH (as a precipitant). The properties of the nanopowder were characterized by XRD, FE-SEM, EDX, and VSM. The obtained results confirmed the presence of nickel oxide nanoparticles with a face-centered cubic (FCC) structure with a lattice constant (a=4.17834 Å). Scherer and Williamson-Hall equations were used to calculate the crystallite size of about (30.5-35.5) nm. The FE-SEM images showed that the particle shape had a ball-like appearance with a uniform and homogeneous distribution and confirmed that the particles were within the nanoscale. The presence of oxygen a

... Show More
View Publication Preview PDF
Crossref (10)
Crossref
Publication Date
Fri Oct 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Biosynthesis, Characterization, Adsorption and Antimicrobial studies of zirconium oxide Nanoparticles Using Punica Granatum Extract
...Show More Authors

In this study we using zirconium sulfate, Punica granatum plant extract, and an alkaline medium, to created ZrO2 nanoparticles. They were then characterized using a variety of techniques, including FT-IR, UV-visible, atomic force microscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The Debye-Scherrer equation was used to calculate the crystal size in X-ray diffraction and found to be 27.82 nm. The particle size of ZrO2 nanoparticles was determined using atomic force microscopy, scanning electron microscopes, and transmission electron microscopy. Utilizing ZrO2 NPs, the metal ions M (II) = Co, Ni, and Cu were successfully a

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Aug 20 2023
Journal Name
Baghdad Science Journal
Biosynthesis, Characterization, Adsorption and Antimicrobial studies of Manganese oxide Nanoparticles Using Punica Granatum Extract
...Show More Authors

Manganese sulfate and Punica granatum plant extract were used to create MnO2 nanoparticles, which were then characterized using techniques like Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, atomic force microscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The crystal's size was calculated to be 30.94nm by employing the Debye Scherrer equation in X-ray diffraction. MnO2 NPs were shown to be effective in adsorbing M(II) = Co, Ni, and Cu ions, proving that all three metal ions may be removed from water in one go. Ni(II) has a higher adsorption rate throughout the board. Co, Ni, and Cu ion removal efficiencies were 32.79%, 75

... Show More
View Publication
Scopus (3)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Biosynthesis, Characterization, Adsorption and Antimicrobial studies of Manganese oxide Nanoparticles Using Punica Granatum Extract
...Show More Authors

Manganese sulfate and Punica granatum plant extract were used to create MnO2 nanoparticles, which were then characterized using techniques like Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, atomic force microscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The crystal's size was calculated to be 30.94nm by employing the Debye Scherrer equation in X-ray diffraction. MnO2 NPs were shown to be effective in adsorbing M(II) = Co, Ni, and Cu ions, proving that all three metal ions may be removed from water in one go. Ni(II) has a higher adsorption rate throughout the board. Co, Ni, and Cu ion removal efficiencie

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (5)
Scopus Crossref
Publication Date
Thu Feb 01 2024
Journal Name
Baghdad Science Journal
Biosynthesis, Characterization, Adsorption and Antimicrobial studies of Vanadium Oxide Nanoparticles Using Punica Granatum Extract
...Show More Authors

This study includes using green or biosynthesis-friendly technology, which is effective in terms of low cost and low time and energy to prepare V2O5NPs nanoparticles from vanadium sulfate VSO4.H2O using aqueous extract of Punica Granatum at a concentration of 0.1M and with a basic medium PH= 8-12. The V2O5NPs nanoparticles were diagnosed using several techniques, such as FT-IR, UV-visible with energy gap Eg = 3.734eV, and the X-Ray diffraction XRD was calculated using the Debye Scherrer equation. It was discovered to be 34.39nm, Scanning Electron Microscope (SEM), Transmission Electron Microscopy TEM. The size, structure, and composition of synthetic V2O5

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (3)
Scopus Crossref
Publication Date
Thu Jul 20 2023
Journal Name
Baghdad Science Journal
Biosynthesis, Characterization, Adsorption and Antimicrobial studies of Vanadium Oxide Nanoparticles Using Punica Granatum Extract
...Show More Authors

This study includes using green or biosynthesis-friendly technology, which is effective in terms of low cost and low time and energy to prepare V2O5NPs nanoparticles from vanadium sulfate VSO4.H2O using aqueous extract of Punica Granatum at a concentration of 0.1M and with a basic medium PH= 8-12. The V2O5NPs nanoparticles were diagnosed using several techniques, such as FT-IR, UV-visible with energy gap Eg = 3.734eV, and the X-Ray diffraction XRD was calculated using the Debye Scherrer equation. It was discovered to be 34.39nm, Scanning Electron Microscope (SEM), Transmission Electron Microscopy TEM. The size, structure, and composition of synthetic V2O5NPs were determined using the (EDX) pattern, Atomic force microscopy AFM. The a

... Show More
View Publication
Scopus (6)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Fri Apr 21 2023
Journal Name
Technologies And Materials For Renewable Energy, Environment And Sustainability: Tmrees22fr
Modified x-ray analysis size strain plot method to determine the lattice stress and strain energy density of calcium titan oxide (CaTiO3) nanoparticles
...Show More Authors

In this research, the size strain plot method was used to estimate the particle size and lattice strain of CaTiO3 nanoparticles. The SSP method was developed to calculate new variables, namely stress, and strain energy, and the results were crystallite size (44.7181794 nm) lattice strain (0.001211), This method has been modified to calculate new variables such as stress and its value (184.3046308X10-3Mpa) and strain energy and its value (1.115833287X10-6 KJm-3).

View Publication
Scopus Crossref