Preferred Language
Articles
/
XRbFvYoBVTCNdQwCj6Qw
Four Char DNA Encoding for Anomaly Intrusion Detection System
...Show More Authors

Recent research has shown that a Deoxyribonucleic Acid (DNA) has ability to be used to discover diseases in human body as its function can be used for an intrusion-detection system (IDS) to detect attacks against computer system and networks traffics. Three main factor influenced the accuracy of IDS based on DNA sequence, which is DNA encoding method, STR keys and classification method to classify the correctness of proposed method. The pioneer idea on attempt a DNA sequence for intrusion detection system is using a normal signature sequence with alignment threshold value, later used DNA encoding based cryptography, however the detection rate result is very low. Since the network traffic consists of 41 attributes, therefore we proposed the most possible less character number (same DNA length) which is four-character DNA encoding that represented all 41 attributes known as DEM4all. The experiments conducted using standard data KDDCup 99 and NSL-KDD. Teiresias algorithm is used to extract Short Tandem Repeat (STR), which includes both keys and their positions in the network traffic, while Brute-force algorithm is used as a classification process to determine whether the network traffic is attack or normal. Experiment run 30 times for each DNA encoding method. The experiment result shows that proposed method has performed better accuracy (15% improved) compare with previous and state of the art DNA algorithms. With such results it can be concluded that the proposed DEM4all DNA encoding method is a good method that can used for IDS. More complex encoding can be proposed that able reducing less number of DNA sequence can possible produce more detection accuracy.

Scopus Clarivate Crossref
View Publication
Publication Date
Sun Jun 05 2016
Journal Name
Baghdad Science Journal
Developing an Immune Negative Selection Algorithm for Intrusion Detection in NSL-KDD data Set
...Show More Authors

With the development of communication technologies for mobile devices and electronic communications, and went to the world of e-government, e-commerce and e-banking. It became necessary to control these activities from exposure to intrusion or misuse and to provide protection to them, so it's important to design powerful and efficient systems-do-this-purpose. It this paper it has been used several varieties of algorithm selection passive immune algorithm selection passive with real values, algorithm selection with passive detectors with a radius fixed, algorithm selection with passive detectors, variable- sized intrusion detection network type misuse where the algorithm generates a set of detectors to distinguish the self-samples. Practica

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Science
Hybrid CNN-SMOTE-BGMM Deep Learning Framework for Network Intrusion Detection using Unbalanced Dataset
...Show More Authors

This paper proposes a new methodology for improving network security by introducing an optimised hybrid intrusion detection system (IDS) framework solution as a middle layer between the end devices. It considers the difficulty of updating databases to uncover new threats that plague firewalls and detection systems, in addition to big data challenges. The proposed framework introduces a supervised network IDS based on a deep learning technique of convolutional neural networks (CNN) using the UNSW-NB15 dataset. It implements recursive feature elimination (RFE) with extreme gradient boosting (XGB) to reduce resource and time consumption. Additionally, it reduces bias toward

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Mon Jul 01 2024
Journal Name
Journal Of Engineering
Efficient Intrusion Detection Through the Fusion of AI Algorithms and Feature Selection Methods
...Show More Authors

With the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Mar 04 2020
Journal Name
Frontiers In Plant Science
Suppression of Arabidopsis Mediator Subunit-Encoding MED18 Confers Broad Resistance Against DNA and RNA Viruses While MED25 Is Required for Virus Defense
...Show More Authors

View Publication
Scopus (5)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sun Apr 01 2018
Journal Name
Journal Of The Faculty Of Medicine Baghdad
Comparison of Three DNA Extraction Methods for Detection Echinococcus granulosus Isolated from Sheep and Cows
...Show More Authors

Background: Hydatosis caused by Echinococcus granulosus dog tap worm is zoonotic infection and economic importance and to public health constitutes a major threat in certain regions of the Middle East. There is an establishment of preventive and control strategy for characterization of E.granulosus in all endemic area which is essential in all molecular studies, to check the DNA of the parasite.
Objective: Our study aimed to obtain the best from three extractions DNA methods from hydatid cyst protoscolecses isolated from sheep in Al-shawlla abattoir in Baghdad.
Subjects and Methods: Three methods were used to extract DNA samples (boiling, crushing and commercial) DNA samples were performed with electrophoreses on 1.3% agarose. Rega

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Apr 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering
Intrusion detection method for internet of things based on the spiking neural network and decision tree method
...Show More Authors

The prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices

... Show More
Preview PDF
Publication Date
Sat Apr 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Intrusion detection method for internet of things based on the spiking neural network and decision tree method
...Show More Authors

The prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices

... Show More
Scopus (12)
Crossref (5)
Scopus Crossref
Publication Date
Mon Oct 30 2023
Journal Name
Iraqi Journal Of Science
Machine Learning Approach for Facial Image Detection System
...Show More Authors

     Face detection systems are based on the assumption that each individual has a unique face structure and that computerized face matching is possible using facial symmetry. Face recognition technology has been employed for security purposes in many organizations and businesses throughout the world. This research examines the classifications in machine learning approaches using feature extraction for the facial image detection system. Due to its high level of accuracy and speed, the Viola-Jones method is utilized for facial detection using the MUCT database. The LDA feature extraction method is applied as an input to three algorithms of machine learning approaches, which are the J48, OneR, and JRip classifiers.  The experiment’s

... Show More
View Publication Preview PDF
Publication Date
Mon Mar 08 2021
Journal Name
Baghdad Science Journal
Developing of bacterial mutagenic assay system for detection
...Show More Authors

Been Antkhav three isolates of soil classified as follows: Bacillus G3 consists of spores, G12, G27 led Pal NTG treatment to kill part of the cells of the three isolates varying degrees treatment also led to mutations urged resistance to streptomycin and rifampicin and double mutations

View Publication Preview PDF
Publication Date
Mon Oct 30 2023
Journal Name
Iraqi Journal Of Science
Machine Learning Approach for Facial Image Detection System
...Show More Authors

HM Al-Dabbas, RA Azeez, AE Ali, Iraqi Journal of Science, 2023

View Publication
Scopus (2)
Scopus