Preferred Language
Articles
/
XRbFvYoBVTCNdQwCj6Qw
Four Char DNA Encoding for Anomaly Intrusion Detection System
...Show More Authors

Recent research has shown that a Deoxyribonucleic Acid (DNA) has ability to be used to discover diseases in human body as its function can be used for an intrusion-detection system (IDS) to detect attacks against computer system and networks traffics. Three main factor influenced the accuracy of IDS based on DNA sequence, which is DNA encoding method, STR keys and classification method to classify the correctness of proposed method. The pioneer idea on attempt a DNA sequence for intrusion detection system is using a normal signature sequence with alignment threshold value, later used DNA encoding based cryptography, however the detection rate result is very low. Since the network traffic consists of 41 attributes, therefore we proposed the most possible less character number (same DNA length) which is four-character DNA encoding that represented all 41 attributes known as DEM4all. The experiments conducted using standard data KDDCup 99 and NSL-KDD. Teiresias algorithm is used to extract Short Tandem Repeat (STR), which includes both keys and their positions in the network traffic, while Brute-force algorithm is used as a classification process to determine whether the network traffic is attack or normal. Experiment run 30 times for each DNA encoding method. The experiment result shows that proposed method has performed better accuracy (15% improved) compare with previous and state of the art DNA algorithms. With such results it can be concluded that the proposed DEM4all DNA encoding method is a good method that can used for IDS. More complex encoding can be proposed that able reducing less number of DNA sequence can possible produce more detection accuracy.

Scopus Clarivate Crossref
View Publication
Publication Date
Sun Aug 01 2021
Journal Name
Journal Of Engineering
Practical comparation of the accuracy and speed of YOLO, SSD and Faster RCNN for drone detection
...Show More Authors

Convolutional Neural Networks (CNN) have high performance in the fields of object recognition and classification. The strength of CNNs comes from the fact that they are able to extract information from raw-pixel content and learn features automatically. Feature extraction and classification algorithms can be either hand-crafted or Deep Learning (DL) based. DL detection approaches can be either two stages (region proposal approaches) detector or a single stage (non-region proposal approach) detector. Region proposal-based techniques include R-CNN, Fast RCNN, and Faster RCNN. Non-region proposal-based techniques include Single Shot Detector (SSD) and You Only Look Once (YOLO). We are going to compare the speed and accuracy of Faster RCNN,

... Show More
View Publication Preview PDF
Crossref (28)
Crossref
Publication Date
Sun Dec 09 2018
Journal Name
Baghdad Science Journal
Application of Randomly Amplified Polymorphic DNA (RAPD) Technique to Estimate Genetic Distance among Some Methicillin Resistant Staphylococcus aureus Isolated from Different Iraqi Hospitals
...Show More Authors

Methicillin resistant Staphylococcus aureus (MRSA) is one of the principal nosocomial causative agents. This bacterium has the capability to resist wide range of antibiotics and it is responsible for many diseases like skin, nose and wounds infection. In this study, randomly amplified polymorphic DNA (RAPD)-PCR was applied with ten random primers to examine the molecular diversity among methicillin resistant Staphylococcus aureus (MRSA) isolates in the hospitals and to investigate the genetic distance between them. 90 Isolates were collected from clinical specimens from Iraqi hospitals for a total of 90 isolates. Only 10 strains (11.11%) were found to be MRSA. From these 10 primers, only 9 gave clear amplification products. 91 fragment l

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Clarivate Crossref
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Applying Cognitive Methodology in Designing On-Line Auto-Tuning Robust PID Controller for the Real Heating System
...Show More Authors

A novel design and implementation of a cognitive methodology for the on-line auto-tuning robust PID controller in a real heating system is presented in this paper. The aim of the proposed work is to construct a cognitive control methodology that gives optimal control signal to the heating system, which achieve the following objectives: fast and precise search efficiency in finding the on- line optimal PID controller parameters in order to find the optimal output temperature response for the heating system. The cognitive methodology (CM) consists of three engines: breeding engine based Routh-Hurwitz criterion stability, search engine based particle
swarm optimization (PSO) and aggregation knowledge engine based cultural algorithm (CA)

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Aip Conference Proceedings
Appraisal of intelligent notification system for smart university campus based internet of objects for social activities
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Thu Oct 01 2020
Journal Name
Journal Of Engineering Science And Technology
Automatic voice activity detection using fuzzy-neuro classifier
...Show More Authors

Voice Activity Detection (VAD) is considered as an important pre-processing step in speech processing systems such as speech enhancement, speech recognition, gender and age identification. VAD helps in reducing the time required to process speech data and to improve final system accuracy by focusing the work on the voiced part of the speech. An automatic technique for VAD using Fuzzy-Neuro technique (FN-AVAD) is presented in this paper. The aim of this work is to alleviate the problem of choosing the best threshold value in traditional VAD methods and achieves automaticity by combining fuzzy clustering and machine learning techniques. Four features are extracted from each speech segment, which are short term energy, zero-crossing rate, auto

... Show More
View Publication Preview PDF
Scopus (7)
Scopus
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Engineering
Voltage Profile Enhancing Using HVDC for 132KV Power System: Kurdistan Case Study
...Show More Authors

Nowadays power systems are huge networks that consist of electrical energy sources, static and lumped load components, connected over long distances by A.C. transmission lines. Voltage improvement is an important aspect of the power system. If the issue is not dealt with properly, may lead to voltage collapse.  In this paper, HVDC links/bipolar connections were inserted in a power system in order to improve the voltage profile. The load flow was simulated by Electrical Transient Analyzer Program (ETAP.16) program in which Newton- Raphson method is used. The load flow simulation studies show a significant enhancement of the power system performance after applying HVDC links on Kurdistan power systems. Th

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Ieee Access
Modified Elman Spike Neural Network for Identification and Control of Dynamic System
...Show More Authors

View Publication
Scopus (25)
Crossref (21)
Scopus Clarivate Crossref
Publication Date
Wed Jun 11 2003
Journal Name
Iraqi Journal Of Laser
The Use of Pulse Frequency Modulation Technique for Optical Video Communication System
...Show More Authors

An optical video communication system is designed and constructed using pulse frequency modulation (PFM) technique. In this work PFM pulses are generated at the transmitter using voltage control oscillator (VCO) of width 50 ns for each pulse. Double frequency, equal width and narrow pulses are produced in the receiver be for demodulation. The use of the frequency doubling technique in such a system results in a narrow transmission bandwidth (25 ns) and high receiver sensitivity.

View Publication Preview PDF
Publication Date
Sun Nov 01 2020
Journal Name
Journal Of Engineering
Convolutional Multi-Spike Neural Network as Intelligent System Prediction for Control Systems
...Show More Authors

The evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Dec 01 2018
Journal Name
2018 Third Scientific Conference Of Electrical Engineering (scee)
An Intelligent Cognitive System Design for Mobile Robot based on Optimization Algorithm
...Show More Authors

View Publication
Scopus (7)
Scopus Crossref