In this article four samples of HgBa2Ca2Cu2.4Ag0.6O8+δ were prepared and irradiated with different doses of gamma radiation 6, 8 and 10 Mrad. The effects of gamma irradiation on structure of HgBa2Ca2Cu2.4Ag0.6O8+δ samples were characterized using X-ray diffraction. It was concluded that there effect on structure by gamma irradiation. Scherrer, crystallization, and Williamson equations were applied based on the X-ray diffraction diagram and for all gamma doses, to calculate crystal size, strain, and degree of crystallinity. It is observed through the results that gamma irradiation causes a change in the atomic density, crystal size, strain, degree of crystallinity and thus a change in the diffraction angle and intensity peaks. It was found that the highest crystal size was 69.3269 nm at 4MRad dose, crystallization is 69.3269 at 4MRad and the strain is 0.0068 when sample without radiation.
Background: Acute myeloid leukemia (AML) is an adult leukemia characterized by rapid proliferation of undifferentiated myeloid precursors, leading to bone marrow (BM) failure and impaired erythropoiesis. The p53 tumor suppressor protein regulates cell division and inhibits tumor development by preventing cell proliferation of altered or damaged DNA. It orchestrates various cellular reactions, including cell cycle arrest, DNA repair, and antioxidant properties. Objectives: To investigate the relationship of P53 serum level with hematological findings, remission, and survival status in de novo AML patients. Methods: This is a cross-sectional study that enrolled 63 newly diagnosed de novo AML patients, and 15 sex- and age-matched healt
... Show MoreThe purpose of the current work was to evaluate the effect of Radiation of Gamma on the superconducting characteristics of the compound PbBr2Ca1.9Sb0.1Cu3O8+δ utilizing a 137Cs source at doses of 10, 15, and 20MRad. Solid state reaction technology was used to prepare the samples. Before and after irradiation, X-ray diffraction (XRD) and superconductor properties were examined. Results indicated that the tetragonal structure of our chemical corresponds to the Pb-1223 phase with an increase in the ratio c/a as a result of gamma irradiation. (Tc (onset) ) and on set temperature Tc (offset)) were also dropping from 113 to the 85.6 K and 129.5 to 97 K, respectively, for a transition temperatu
Superconducting compound Bi2Sr2-xYxCa2Cu3O10+δ were Synthesized by method of solid state reaction, at 1033 K for 160 hours temperature of the sintering at normal atmospheric pressure where substitutions Yttrium oxide with Strontium. When Y2O3 concentration (0.0, 0.1, 0.2, 0.3, 0.4 and 0.5). All specimens of Bi2Sr2Ca2Cu3O10+δ superconducting compounds were examined. The resistivity of electrical was checked by the four point probe technique, It was found th
six specimens of the Hg0.5Pb0.5Ba2Ca2Cu3-y
We report the detail characterizations and
Abstract Ternary Silver Indium selenide Sulfur AgInSe1.8S0.2 in pure form and with a 0.2 ratio of Sulfur were fabricated via thermal evaporation under vacuum 3*10-6 torr on glasses substrates with a thickness of (550) nm. These films were investigated to understand their structural, optical, and Hall Characteristics. X-ray diffraction analysis was employed to examine the impact of varying Sulfur ratios on the structural properties. The results revealed that the AgInSe1.8S0.2 thin films in their pure form and with a 0.2 Sulfur ratio, both at room temperature and after annealing at 500 K, exhibited a polycrystalline nature with a tetragonal structure and a predominant orientation along the (112) plane, indicating an enhanced de
... Show More