Preferred Language
Articles
/
XRZaU4cBVTCNdQwC6UWh
Unsteady nonlinear panel method with mixed boundary conditions
...Show More Authors

A new panel method had been developed to account for unsteady nonlinear subsonic flow. Two boundary conditions were used to solve the potential flow about complex configurations of airplanes. Dirichlet boundary condition and Neumann formulation are frequently applied to the configurations that have thick and thin surfaces respectively. Mixed boundary conditions were used in the present work to simulate the connection between thick fuselage and thin wing surfaces. The matrix of linear equations was solved every time step in a marching technique with Kelvin's theorem for the unsteady wake modeling. To make the method closer to the experimental data, a Nonlinear stripe theory which is based on a two-dimensional viscous-inviscid interaction method for each station along the wing spanwise direction and Prandtle-Glauert rule for compressibility effect were used to enhance the potential results of the method. The fast turnaround time and the ability to model arbitrary geometries is the goal of the present work. Different airplanes configurations were simulated (DLR-F4, light jet, cargo and four engine commercial airplanes). The results of pressure and forces coefficients were compared with the DLR-F4 airplane. The comparisons showed a satisfying agreement with the experimental data. The method is simple and fast as compared with other singularity methods, which may be dependent as a preliminary method to design aircrafts.

Scopus Clarivate Crossref
View Publication
Publication Date
Thu Nov 17 2022
Journal Name
Journal Of Interdisciplinary Mathematics
Study on approximate analytical methods for nonlinear differential equations
...Show More Authors

In this work, an analytical approximation solution is presented, as well as a comparison of the Variational Iteration Adomian Decomposition Method (VIADM) and the Modified Sumudu Transform Adomian Decomposition Method (M STADM), both of which are capable of solving nonlinear partial differential equations (NPDEs) such as nonhomogeneous Kertewege-de Vries (kdv) problems and the nonlinear Klein-Gordon. The results demonstrate the solution’s dependability and excellent accuracy.

Scopus (8)
Scopus
Publication Date
Wed Jun 27 2018
Journal Name
University Of Leicester
The Convective Instability of BEK Family of Non-Newtonian Rotating Boundary-Layer Flows
...Show More Authors

The BEK family of flows have many important practical applications such as centrifugal pumps, steam turbines, turbo-machinery and rotor-stator devices. The Bödewadt, Ekman and von Kármán flows are particular cases within this family. The convective instability of the BEK family of rotating boundary-layer flows has been considered for generalised Newtonian fluids, power-law and Carreau fluids. A linear stability analysis is conducted using a Chebyshev collocation method in order to investigate the effect of shear-thinning and shear-thickening fluids for generalised Newtonian fluids on the convective Type I (inviscid crossflow) and Type II (viscous streamline curvature) modes of instability. The results reveal that shear-thinning power-law

... Show More
View Publication Preview PDF
Publication Date
Tue Apr 01 2014
Journal Name
International Communications In Heat And Mass Transfer
Determination of a time-dependent thermal diffusivity and free boundary in heat conduction
...Show More Authors

View Publication
Scopus (18)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Mon Jan 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Continuous Classical Optimal Control governing by Triple Linear Parabolic Boundary Value Problem
...Show More Authors

This paper deals with the continuous classical optimal control problem for triple partial differential equations of parabolic type with initial and boundary conditions; the Galerkin method is used to prove the existence and uniqueness theorem of the state vector solution for given continuous classical control vector. The proof of the existence theorem of a continuous classical optimal control vector associated with the triple linear partial differential equations of parabolic type is given. The derivation of the Fréchet derivative for the cost function is obtained. At the end, the theorem of the necessary conditions for optimality of this problem is stated and is proved.

View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Sep 01 2022
Journal Name
Iraqi Journal Of Physics
Positron Interactions with Some Human Body Organs Using Monte Carlo Probability Method
...Show More Authors

In this study, mean free path and positron elastic-inelastic scattering are modeled for the elements hydrogen (H), carbon (C), nitrogen (N), oxygen (O), phosphorus (P), sulfur (S), chlorine (Cl), potassium (K) and iodine (I). Despite the enormous amounts of data required, the Monte Carlo (MC) method was applied, allowing for a very accurate simulation of positron interaction collisions in live cells. Here, the MC simulation of the interaction of positrons was reported with breast, liver, and thyroid at normal incidence angles, with energies ranging from 45 eV to 0.2 MeV. The model provides a straightforward analytic formula for the random sampling of positron scattering. ICRU44 was used to compile the elemental composition data. In this

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Aug 31 2019
Journal Name
Iraqi Journal Of Physics
Characterization of Zinc oxide Nanostructures prepared by hydrothermal method with Antibacterial property
...Show More Authors

        In this study, Zinc oxide nanostructures were synthesized via a hydrothermal method by using zinc nitrate hexahydrate and sodium hydroxide as a precursor. Three different annealing temperatures were used to study their effect on ZnO NSs properties. The synthesized nanostructure was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Atomic force microscope (AFM), and Fourier Transform Infrared Spectroscopy (FTIR). Their optical properties were studied by using UV -visible spectroscopy. The XRD analysis confirms that all ZnO nanostructures have the hexagonal wurtzite structure with average crystallite size within the range of (30.59 - 34

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu May 30 2024
Journal Name
Journal Of Interdisciplinary Mathematics
Analytical approximate solutions of random integro differential equations with laplace decomposition method
...Show More Authors

An efficient combination of Adomian Decomposition iterative technique coupled with Laplace transformation to solve non-linear Random Integro differential equation (NRIDE) is introduced in a novel way to get an accurate analytical solution. This technique is an elegant combination of theLaplace transform, and the Adomian polynomial. The suggested method will convert differential equations into iterative algebraic equations, thus reducing processing and analytical work. The technique solves the problem of calculating the Adomian polynomials. The method’s efficiency was investigated using some numerical instances, and the findings demonstrate that it is easier to use than many other numerical procedures. It has also been established that (LT

... Show More
Scopus
Publication Date
Mon Jan 01 2024
Journal Name
Iraqi Journal Of Applied Physics
Decoration of Zinc Oxide Nanoparticles with Aluminum Nanoparticles by Explosive Strips Method
...Show More Authors

In this study, aluminum nanoparticles (Al NPs) were prepared using explosive strips method in double-distilled deionized water (DDDW), where the effect of five different currents (25, 50, 75, 100 and 125 A) on particle size and distribution was studied. Also, the explosive strips method was used to decorate zinc oxide particles with Al particles, where Al particles were prepared in suspended from zinc oxide with DDDW. Transmission electron microscopy (TEM), UV-visible absorption spectroscopy, and x-ray diffraction are used to characterize the nanoparticles. XRD pattern were examined for three samples of aluminum particles and DDDW prepared with three current values (25, 75 and 125 A) and three samples prepared with the same currents for zin

... Show More
Scopus
Publication Date
Mon Dec 05 2022
Journal Name
Baghdad Science Journal
K-Nearest Neighbor Method with Principal Component Analysis for Functional Nonparametric Regression
...Show More Authors

This paper proposed a new  method to study functional non-parametric regression data analysis with conditional expectation in the case that the covariates  are functional and the Principal Component Analysis was utilized to de-correlate the multivariate response variables. It  utilized the formula of the Nadaraya Watson estimator (K-Nearest Neighbour (KNN)) for prediction with different types of the semi-metrics, (which are based on Second Derivative and Functional Principal Component Analysis (FPCA))  for measureing the closeness between curves.  Root Mean Square Errors is used for the  implementation of this model which is then compared to the independent response method. R program is used for analysing data. Then, when  the cov

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Mon May 15 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Finite Difference Method for Two-Dimensional Fractional Partial Differential Equation with parameter
...Show More Authors

 In this paper, we introduce and discuss an algorithm for the numerical solution of two- dimensional fractional partial differential equation with parameter. The algorithm for the numerical solution of this equation is based on implicit and an explicit difference method. Finally, numerical example is provided to illustrate that the numerical method for solving this equation is an effective solution method.

View Publication Preview PDF