The interests toward developing accurate automatic face emotion recognition methodologies are growing vastly, and it is still one of an ever growing research field in the region of computer vision, artificial intelligent and automation. However, there is a challenge to build an automated system which equals human ability to recognize facial emotion because of the lack of an effective facial feature descriptor and the difficulty of choosing proper classification method. In this paper, a geometric based feature vector has been proposed. For the classification purpose, three different types of classification methods are tested: statistical, artificial neural network (NN) and Support Vector Machine (SVM). A modified K-Means clustering algorithm has been developed for clustering purpose. Mainly, the purpose of using modified K-means clustering technique is to group the similar features into (K) templates in order to simulate the differences in the ways that human express each emotion. To evaluate the proposed system, a subset from Cohen-Kanade (CK) dataset have been used, it consists of 870 facial images samples for the seven basic emotions (angry, disgust, fear, happy, normal, sad, and surprise). The conducted test results indicated that SVM classifier can lead to higher performance in comparison with the results of other proposed methods due to its desirable characteristics (such as large-margin separation, good generalization performance, etc.).
This investigation proposed an identification system of offline signature by utilizing rotation compensation depending on the features that were saved in the database. The proposed system contains five principle stages, they are: (1) data acquisition, (2) signature data file loading, (3) signature preprocessing, (4) feature extraction, and (5) feature matching. The feature extraction includes determination of the center point coordinates, and the angle for rotation compensation (θ), implementation of rotation compensation, determination of discriminating features and statistical condition. During this work seven essential collections of features are utilized to acquire the characteristics: (i) density (D), (ii) average (A), (iii) s
... Show MoreBackground: Penetrating neck injuries are common problem in our country due to increasing violence, terrorist bombing and military operations.
These injuries are potentially life threating and need great attention and proper management.
Objective: The aim of this study is to focus on the importance of anatomical zonal classification of the neck in the management of penetrating injuries of the visceral compartment of the Neck.
Methods :70 patients with various injuries who were managed at causality unit and Otolaryngology department in Al-Kindy Teaching Hospital during aperiod from January 1st 2015 to October 31st 2015.
The study carried on those patient depending on proper clinical examination and their urgent management.
In this work, an analytical approximation solution is presented, as well as a comparison of the Variational Iteration Adomian Decomposition Method (VIADM) and the Modified Sumudu Transform Adomian Decomposition Method (M STADM), both of which are capable of solving nonlinear partial differential equations (NPDEs) such as nonhomogeneous Kertewege-de Vries (kdv) problems and the nonlinear Klein-Gordon. The results demonstrate the solution’s dependability and excellent accuracy.
Document analysis of images snapped by camera is a growing challenge. These photos are often poor-quality compound images, composed of various objects and text; this makes automatic analysis complicated. OCR is one of the image processing techniques which is used to perform automatic identification of texts. Existing image processing techniques need to manage many parameters in order to clearly recognize the text in such pictures. Segmentation is regarded one of these essential parameters. This paper discusses the accuracy of segmentation process and its effect over the recognition process. According to the proposed method, the images were firstly filtered using the wiener filter then the active contour algorithm could b
... Show MoreOver the past few years, ear biometrics has attracted a lot of attention. It is a trusted biometric for the identification and recognition of humans due to its consistent shape and rich texture variation. The ear presents an attractive solution since it is visible, ear images are easily captured, and the ear structure remains relatively stable over time. In this paper, a comprehensive review of prior research was conducted to establish the efficacy of utilizing ear features for individual identification through the employment of both manually-crafted features and deep-learning approaches. The objective of this model is to present the accuracy rate of person identification systems based on either manually-crafted features such as D
... Show MoreSubcutaneous vascularization has become a new solution for identification management over the past few years. Systems based on dorsal hand veins are particularly promising for high-security settings. The dorsal hand vein recognition system comprises the following steps: acquiring images from the database and preprocessing them, locating the region of interest, and extracting and recognizing information from the dorsal hand vein pattern. This paper reviewed several techniques for obtaining the dorsal hand vein area and identifying a person. Therefore, this study just provides a comprehensive review of existing previous theories. This model aims to offer the improvement in the accuracy rate of the system that was shown in previous studies and
... Show MoreMethods of speech recognition have been the subject of several studies over the past decade. Speech recognition has been one of the most exciting areas of the signal processing. Mixed transform is a useful tool for speech signal processing; it is developed for its abilities of improvement in feature extraction. Speech recognition includes three important stages, preprocessing, feature extraction, and classification. Recognition accuracy is so affected by the features extraction stage; therefore different models of mixed transform for feature extraction were proposed. The properties of the recorded isolated word will be 1-D, which achieve the conversion of each 1-D word into a 2-D form. The second step of the word recognizer requires, the
... Show MoreDue to the large population of motorway users in the country of Iraq, various approaches have been adopted to manage queues such as implementation of traffic lights, avoidance of illegal parking, amongst others. However, defaulters are recorded daily, hence the need to develop a mean of identifying these defaulters and bring them to book. This article discusses the development of an approach of recognizing Iraqi licence plates such that defaulters of queue management systems are identified. Multiple agencies worldwide have quickly and widely adopted the recognition of a vehicle license plate technology to expand their ability in investigative and security matters. License plate helps detect the vehicle's information automatically ra
... Show MoreDisease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature
... Show More