Aggregate production planning (APP) is one of the most significant and complicated problems in production planning and aim to set overall production levels for each product category to meet fluctuating or uncertain demand in future. and to set decision concerning hiring, firing, overtime, subcontract, carrying inventory level. In this paper, we present a simulated annealing (SA) for multi-objective linear programming to solve APP. SA is considered to be a good tool for imprecise optimization problems. The proposed model minimizes total production and workforce costs. In this study, the proposed SA is compared with particle swarm optimization (PSO). The results show that the proposed SA is effective in reducing total production costs and requires minimal time.
Sixty-four isolate were klebsiella pneumoniae. Fourteen bacteria isolates “Kelbsiella species” were taken from soil and water hospital in the period between October to December 2018, those isolated were cultured on a blood agar to test their ability to hydrolytic due to formation the inhibition zone . Twenty one isolates of K. pneumoniae were selected to be cultured in mineral salt agarfor testing their efficiency to produce laccase enzyme .The efficient isolate was diagnosed depending on phenotypic, microscopic and biochemical tests to be Klebsiella pneumoniae K7. Laccases (benzenediol: oxygen oxidoreductases; EC: 1.10.3.2) are subfamily of multicopper oxidases (MCOs) from Klebsiellapneumoniae K7 has been partially characterized by
... Show MoreLattakia city faces many problems related to the mismanagement of solid waste, as the disposal process is limited to the random Al-Bassa landfill without treatment. Therefore, solid waste management poses a special challenge to decision-makers by choosing the appropriate tool that supports strategic decisions in choosing municipal solid waste treatment methods and evaluating their management systems. As the human is primarily responsible for the formation of waste, this study aims to measure the degree of environmental awareness in the Lattakia Governorate from the point of view of the research sample members and to discuss the effect of the studied variables (place of residence, educational level, gender, age, and professional status) o
... Show MoreAnaerobic digestion (AD) is the most common process for dealing with primary and secondary wastewater sludge. In the present work, four pre-treatment methods (ultrasonic, chemical, thermal, and thermo-chemical) are investigated in Al-Rustumya Wastewater Treatment plant in order to find their effect on biogas production and volatile solid removal efficiency during anaerobic digestion.
Two frequencies of ultrasonic wave were used 30 KHz and 50 KHz during the pre-treatment. Sodium hydroxide was added in different amounts to give three pH values of 9, 10 and 11 in chemical pre-treating processes. The sludge was heated at 60oC and 80oC through thermal pre-treatment experiment. Also, the sludge was treated thermo-chemically at 80 oC and pH
The current research seek to known the strategic planning for the taxes and its important , and its effect upon the investment , and this research was be in the general board of taxes, and the economical directorate of the ministry of finance , therefore this research started from the problem below:
- What level of the important and type of the research changeable of the research ( the strategic planning for the taxes and investment) in the research organization ?
- Is there any relation of the join and effect of the changeable of the research (the strategic planning for the taxes and investment)in the research organization ?
Therefore this research depended a hypotheti
... Show MoreThis study aims to know the degree of importance and the availability of the enhancing specifications of the educational process, and the way its objectives are achieved. Such a step involves using educational techniques, laying the selection foundations, knowing the methods of their employment and tracking the obstacles that limit this employment in teaching Arabic to non-native speakers. To achieve these objectives, the study followed a descriptive approach, and collected the necessary data through an integrated questionnaire prepared for the purpose of describing the phenomenon or topic. This approach was adopted, as it is characterized by being comprehensive, focuses on collecting data related and necessary to the topic under study.
... Show MoreThe solution casting method was used to prepare a polyvinylpyrrolidone (PVP)/Multi-walled carbon nanotubes (MWCNTs) nanocomposite with Graphene (Gr). Field Effect Scanning Electron Microscope (FESEM) and Fourier Transformer Infrared (FTIR) were used to characterize the surface morphology and optical properties of samples. FESEM images revealed a uniform distribution of graphene within the PVP-MWCNT nanocomposite. The FTIR spectra confirmed the nanocomposite information is successful with apperaring the presence of primary distinct peaks belonging to vibration groups that describe the prepared samples.. Furthermore, found that the DC electrical conductivity of the prepared nanocomposites increases with increasing MWCNT concentratio
... Show MoreThe History of Multi Parties and its Effect on Political System in India
Background: Maxillary canines are important aesthetically and functionally, but impacted canines are more difficult and time consuming to treat, the aim of this study is to investigate with multi-detector computed tomography the correlation between the bone density and the upper canine impaction. Material and method: A sample of Unilaterally impacted maxillary canines from 24 patients (19 female, 5 male) who were referred to accurately localize the impacted canines at al- Karkh general hospital were evaluated by a volumetric 3-d images by the multi-detector computed tomography to accurately measure the bone density of the maxillary cortical palate of the maxillary impacted canine side and compare it with the other side of the normally erupt
... Show MoreBig data analysis has important applications in many areas such as sensor networks and connected healthcare. High volume and velocity of big data bring many challenges to data analysis. One possible solution is to summarize the data and provides a manageable data structure to hold a scalable summarization of data for efficient and effective analysis. This research extends our previous work on developing an effective technique to create, organize, access, and maintain summarization of big data and develops algorithms for Bayes classification and entropy discretization of large data sets using the multi-resolution data summarization structure. Bayes classification and data discretization play essential roles in many learning algorithms such a
... Show More