Aggregate production planning (APP) is one of the most significant and complicated problems in production planning and aim to set overall production levels for each product category to meet fluctuating or uncertain demand in future. and to set decision concerning hiring, firing, overtime, subcontract, carrying inventory level. In this paper, we present a simulated annealing (SA) for multi-objective linear programming to solve APP. SA is considered to be a good tool for imprecise optimization problems. The proposed model minimizes total production and workforce costs. In this study, the proposed SA is compared with particle swarm optimization (PSO). The results show that the proposed SA is effective in reducing total production costs and requires minimal time.
The Voluntary Obedience has great importance for the modern taxes systems and its management and this is meant the taxpayer whom in charge to pay of his taxes obligations voluntarily , he is very known of himself whereas he prepared his finishing accountings and present them as samples prepared by taxes management and settle the tax sum directly according to specified income , which has an impact to find end to tax evasion as result lead to increase the tax income and achieve the justice for the taxpayer and the state treasury
In this research, the problem of multi- objective modal transport was formulated with mixed constraints to find the optimal solution. The foggy approach of the Multi-objective Transfer Model (MOTP) was applied. There are three objectives to reduce costs to the minimum cost of transportation, administrative cost and cost of the goods. The linear membership function, the Exponential membership function, and the Hyperbolic membership function. Where the proposed model was used in the General Company for the manufacture of grain to reduce the cost of transport to the minimum and to find the best plan to transfer the product according to the restrictions imposed on the model.
Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for d
... Show MoreOver the past few decades, the health benefits are under threat as many commonly used antibiotics have become less and less effective against certain illnesses not only because many of them produce toxic reactions but also due to the emergence of drug-resistant bacteria. The clinical use of a combination of antibiotic therapy for Pseudomonas aeruginosa infections is probably more effective than monotherapy. The present study aims to estimate the antibacterial and antibiofilm activity of Conocarpus erectus leaves extracts against multi-drug resistant P. aeruginosa isolated from different hospitals in Baghdad city. One hundred fifty different clinical specimens were collected from patients from September 2021 to January 2022. All samples were
... Show More