The current study performs an explicit nonlinear finite element simulation to predict temperature distribution and consequent stresses during the friction stir welding (FSW) of AA 7075-T651 alloy. The ABAQUS® finite element software was used to model and analyze the process steps that involve plunging, dwelling, and traverse stages. Techniques such as Arbitrary Lagrangian–Eulerian (ALE) formulation, adaptive meshing, and computational feature of mass scaling were utilized to simulate sequence events during the friction stir welding process. The contact between the welding tool and workpiece was modelled through applying Coulomb’s friction model with a nonlinear friction coefficient value. Also, the model considered the effect of nonlinear material properties as well as heat transfer conditions such as heat losses due to convection and thermal contact conductance between the workpiece and the backing plate interface on the thermal history. To validate the computational model results, an experimental procedure was carried out to measure temperature history on both sides of the specimen as well as the plunging force throughout the whole process time. The results obtained showed that symmetrical temperature distribution throughout the workpiece width was distinguished, implying that the tool rotation has a minor effect on the final temperature distribution. In addition, asymptotic V shape with high gradient temperature value in the weld nugget region after the full plunging was distinguished. Mechanical stresses and related plastic deformations generated, while achieving the FSW samples were evaluated in addition to the tool reaction force and heat generated to protect against tool failure.
The purpose of this research is to investigate the effects of rotation on heat transfer using
inclination magnetohydrodynamics for a couple-stress fluid in a non-uniform canal. When the
Reynolds number is low and the wavelength is long, math formulas are used to describe the stream
function, as well as the gradient of pressure, temperature, pressure rise and axial velocity per
wavelength, which have been calculated analytically. The many parameters in the current model
are assigned a definite set of values. It has been noticed that both the pressure rise and the pressure
gradient decrease with the rise of the rotation and couple stress, while they increase with an
increase in viscosity and Hartmann nu
Olive leaves extract is famous for its antioxidant and protective effects. In this study, the aqueous extract of Iraqi Olea europaea L. Leaves was investigated for its anti-diabetic effects against low double doses of alloxan induced Diabetes Mellitus in rats. Low double doses (75 mgKg body weight) of alloxan were injected intraperitoneally at day 1&29 of the experimental period in rats, whereas an aqueous extract of Iraqi Olea europaea L. Leaves was added continuously to their drinking water. Serum malondialdehyde concentration, total oxidative stress and oxidative stress index as oxidoreductive stress biomarker, activities of certain anti-oxidoreductive stress enzymes (glutathione peroxidase, super oxide dismutase and catalase) and concen
... Show MoreCoronavirus 2019 (COVID-19) pandemic led to a massive global socio-economic tragedy that has impacted the ecosystem. This paper aims to contextualize urban and rural environmental situations during the COVID-19 pandemic in the Middle East and North Africa (MENA) Region.
An online survey was conducted, 6770 participants were included in the final analysis, and 64% were females. The majority of the participants were urban citizens (74%). Over 50% of the urban residents significantly (
This paper presents theoretical parametric study of the curvature ductility capacity for reinforced concrete column sections. The study considers the behavior of concrete and reinforcing steel under different strain rates. A computer program has been written to compute the curvature ductility taking into account the spalling in concrete cover. Strain rate sensitive constitutive models of steel and concrete were used for predicting the moment-curvature relationship of reinforced concrete columns at different rate of straining. The study parameters are the yield strength of main reinforcement, yield strength of transverse reinforcement, compressive strength of concrete, spacing of ties and the axial load. The results indicated that hi
... Show MoreIncreasing world demand for renewable energy resources as wind energy was one of the goals behind research optimization of energy production from wind farms. Wake is one of the important phenomena in this field. This paper focuses on understanding the effect of angle of attack (α) on wake characteristics behind single horizontal axis wind turbines (HAWT). This was done by design three rotors different from each other in value of α used in the rotor design process. Values of α were (4.8˚,9.5˚,19˚). The numerical simulations were conducted using Ansys Workbench 19- Fluent code; the used turbulence model was (k-ω SST). The results showed that best value for extracted wind energy was at α=19˚, spread distance of wak
... Show MoreNonlinear regression models are important tools for solving optimization problems. As traditional techniques would fail to reach satisfactory solutions for the parameter estimation problem. Hence, in this paper, the BAT algorithm to estimate the parameters of Nonlinear Regression models is used . The simulation study is considered to investigate the performance of the proposed algorithm with the maximum likelihood (MLE) and Least square (LS) methods. The results show that the Bat algorithm provides accurate estimation and it is satisfactory for the parameter estimation of the nonlinear regression models than MLE and LS methods depend on Mean Square error.
Waste materials might be utilized in various applications, such as sustainable roller compacted concrete pavements (RCCP), to lessen the negative environmental consequences of construction waste. The impacts of utilizing (brick, thermostone, granite, and ceramic) powders on the mechanical characteristics of RCCP are investigated in this study. To achieve this, the waste materials were crushed, grounded, and blended before being utilized as filler in the RCCP. After the mixes were prepared, compressive strength, splitting tensile strength, flexural strength, water absorption, density, and porosity were all determined. According to the research results, adding some of these powders, mainly brick and granite powder, enhances the mechanical
... Show MoreBackground: Dental implant is one of the most important options for teeth replacement. In two stage implant surgery, a few options could be used for uncovering implants, scalpel and laser are both considered as effective methods for this purpose. The Aim of the study: To compare soft tissue laser and scalpel for exposing implant in 2nd stage surgery in terms of the need for anesthesia, duration of procedure and pain level assessment at day 1 and day 7 post operatively using visual analogue scale . Materials and methods: Ten patients who received bilateral implants participated after healing period completed, gingival depth over each implant was recorded and then implant(s) were exposed by either scalpel or laser with determination for th
... Show More