Preferred Language
Articles
/
XBbwDIcBVTCNdQwCkDND
Circularization Technique for Strengthening of Plain Concrete Short Square Columns Subjected to a Uniaxial Compression Compressive Pressure
...Show More Authors

This paper presents an experimental study for strengthening existing columns against axial compressive loads. The objective of this work is to study the behavior of concrete square columns strengthening with circulation technique. In Iraq, there are significantly more reinforced rectangular and square columns than reinforced circular columns in reinforced concrete buildings. Moreover, early research studies indicated that strengthening of rectangular or square columns using wraps of CFRP (Carbon Fiber Reinforced Polymer) provided rather little enhancement to their load-carrying capacity. In this paper, shape modification technique was performed to modify the shape (cross section) of the columns from square columns into circular columns. Shape modification technique is also called circularization technique because the cross section is modified from square into circular cross section. Then, the circularized columns were wrapped with CFRP wraps. Shape modification is the strengthening method adopted in this paper as a mean to strengthen existing square columns. Columns studied in this paper are short columns with square sections as a special case of rectangular columns. Columns in this study are plain concrete columns (having concrete strength of  = 24.41 MPa) with no internal steel reinforcement. The aim of this research is to study experimentally the behavior of circularized concrete square columns confined with CFRP wraps. Then, for better understanding, the results were compared with another, more widely used, strengthening technique which is the direct wrapping of square columns with CFRP wraps. Thus, investigating experimentally the effectiveness of the two aforementioned strengthening techniques in increasing the load-carrying capacity and ductility of the existing concrete columns. The methodology of this research is that six plain concrete short square columns were casted. These six columns were exerted to compressive pressure using concrete testing machine. These six columns were divided into three groups, each group consisted of 2 columns. The three groups were classified as follows: first group (titled L0) consisted of two square columns which were not strengthened by any method, second group (titled L1) consisted of two square columns confined by one layer of CFRP wraps, finally, the third group (titled LC1) consisted of two circularized square columns confined by one layer of CFRP wraps.Experimental results showed that load bearing capacity and ductility of square columns have been significantly enhanced. Test results showed that shape modification technique (columns LC1) produced enhancement in load carrying capacity about 167.8 % of the original non-strengthened columns (columns L0). Furthermore, square columns wrapped by one layer of CFRP wraps (columns L1) produced enhancement in load carrying capacity about 56.1% of the original non-strengthened columns (columns L0). As such, it was evident that circularization technique resulted in enhancement in load carrying capacity far more than the enhancement obtained from wrapping the square columns with CFRP wraps.

Crossref
View Publication
Publication Date
Mon Feb 21 2022
Journal Name
Applied Sciences
The Behavior of Hybrid Fiber-Reinforced Concrete Elements: A New Stress-Strain Model Using an Evolutionary Approach
...Show More Authors

Several stress-strain models were used to predict the strengths of steel fiber reinforced concrete, which are distinctive of the material. However, insufficient research has been done on the influence of hybrid fiber combinations (comprising two or more distinct fibers) on the characteristics of concrete. For this reason, the researchers conducted an experimental program to determine the stress-strain relationship of 30 concrete samples reinforced with two distinct fibers (a hybrid of polyvinyl alcohol and steel fibers), with compressive strengths ranging from 40 to 120 MPa. A total of 80% of the experimental results were used to develop a new empirical stress-strain model, which was accomplished through the application of the parti

... Show More
Scopus (32)
Crossref (31)
Scopus Clarivate Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Journal Of Engineering
Production Load–bearing Concrete Masonry Units by Using Recycled Waste Crushed Clay Bricks; A Review
...Show More Authors

There are serious environmental problems in all countries of the world, due to the waste material such as crushed clay bricks (CCB) and in huge quantities resulting from the demolition of buildings. In order to reduce the effects of this problem as well as to preserve natural resources, it is possible to work on recycling (CCB) and to use it in the manufacture of environmentally friendly loaded building units by replacing percentages in coarse aggregate by volume. It can be used as a powder and replacing of percentages in cement by weight and study the effect on the physical and mechanical properties of the concrete and the masonry unit. Evaluation of its performance through workability, dry density, compressive strength, thermal conduct

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Nov 30 2023
Journal Name
Research Journal Of Pharmacy And Technology
Preparation and Evaluation of Aceclofenac Solid Dispersion by Fusion Technique and Effervescent Assisted Fusion Technique: Comparative Study
...Show More Authors

Solid dispersion (SD) is one of the most widely used methods to resolve issues accompanied by poorly soluble drugs. The present study was carried out to enhance the solubility and dissolution rate of Aceclofenac (ACE), a BCS class II drug with pH-dependent solubility, by the SD method. Effervescent assisted fusion technique (EFSD) using different hydrophilic carriers (mannitol, urea, Soluplus®, poloxamer 188, and poloxamer 407) in the presence of an effervescent base (sodium bicarbonate and citric acid) in different drug: carrier: effervescent base ratio and the conventional fusion technique (FSD) were used to prepare ACE SD. Solubility, dissolution rate, Fourier transformation infrared spectroscopy (FTIR), PowderX-ray diffraction

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Sat Dec 02 2023
Journal Name
Journal Of Engineering
Evaluation of the Stability and Flow of Asphalt Concrete Produced with Waste Brick Tile Powder as a Filler
...Show More Authors

The utilization of recycled brick tile powder as a replacement for conventional filler in the asphalt concrete mix has been studied in this research. This research evaluates the effectiveness of recycled brick tile powder and determines its optimum replacement level. Using recycled brick tile powder is significant from an environmental standpoint as it is a waste product from construction activities. Sixteen asphalt concrete samples were produced, and eight were soaked for a day. Samples contained 5% Bitumen, 2% to 5% brick tile powder, and conventional stone dust filler. The properties of samples were evaluated using the Marshall test. It was observed that the resistance to stiffness and deformation of asphalt concrete

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Assessing Durability of Roller Compacted Concrete
...Show More Authors

Roller Compacted Concrete (RCC) is a technology characterized mainly by the use of rollers for compaction; this technology achieves significant time and cost savings in the construction of dams and roads. The primary scope of this research is to study the durability and performance of roller compacted concrete that was constructed in the laboratory using roller compactor manufactured in local market. A total of (60) slab specimen of (38×38×10) cm was constructed using the roller device, cured for 28 days, then 180 sawed cubes and 180 beams are obtained from RCC slab. Then, the specimens are subjected to 60 cycles of freezing and thawing, sulfate attack test and wetting and drying. The degree of effect of the type of coarse aggregate (c

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Mar 01 2022
Journal Name
Structures
Behavior of reinforced concrete tapered beams
...Show More Authors

Scopus (12)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Tue Oct 30 2018
Journal Name
Advances In Civil Engineering
Equivalent Modulus of Asphalt Concrete Layers
...Show More Authors

A flexible pavement structure usually comprises more than one asphalt layer, with varying thicknesses and properties, in order to carry the traffic smoothly and safely. It is easy to characterize each asphalt layer with different tests to give a full description of that layer; however, the performance of the whole; asphalt structure needs to be properly understood. Typically, pavement analysis is carried out using multi-layer linear elastic assumptions, via equations and computer programs such as KENPAVE, BISAR, etc. These types of analysis give the response parameters including stress, strain, and deflection at any point under the wheel load. This paper aims to estimate the equivalent Resilient Modulus (MR) of the asphalt concrete

... Show More
Crossref (3)
Clarivate Crossref
Publication Date
Tue Oct 30 2018
Journal Name
Civil Engineering Journal
Equivalent Modulus of Asphalt Concrete Layers
...Show More Authors

A flexible pavement structure usually comprises more than one asphalt layer, with varying thicknesses and properties, in order to carry the traffic smoothly and safely. It is easy to characterize each asphalt layer with different tests to give a full description of that layer; however, the performance of the whole; asphalt structure needs to be properly understood. Typically, pavement analysis is carried out using multi-layer linear elastic assumptions, via equations and computer programs such as KENPAVE, BISAR, etc. These types of analysis give the response parameters including stress, strain, and deflection at any point under the wheel load. This paper aims to estimate the equivalent Resilient Modulus (MR) of the asphalt concrete

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Fri Jul 01 2016
Journal Name
Journal Of Engineering
FRACTURE PROPERTIES OF LOCAL ASPALT CONCRETE
...Show More Authors

The local asphalt concrete fracture properties represented by the fracture energy, J-integral, and stress intensity factor are calculated from the results of the three point bending beam test made for pre notches beams specimens with deformation rate of 1.27 mm/min. The results revealed that the stress intensity factor has increased by more than 40% when decreasing the testing temperature 10˚C and increasing the notch depth from 5 to 30mm. The change of asphalt type and content have a limited effect of less than 6%.

 

View Publication Preview PDF
Publication Date
Mon Oct 01 2018
Journal Name
Journal Of Petroleum Science And Engineering
Operation of a MEG pilot regeneration system for organic acid and alkalinity removal during MDEA to FFCI switchover
...Show More Authors

View Publication
Scopus (13)
Crossref (13)
Scopus Clarivate Crossref