This paper presents an experimental study for strengthening existing columns against axial compressive loads. The objective of this work is to study the behavior of concrete square columns strengthening with circulation technique. In Iraq, there are significantly more reinforced rectangular and square columns than reinforced circular columns in reinforced concrete buildings. Moreover, early research studies indicated that strengthening of rectangular or square columns using wraps of CFRP (Carbon Fiber Reinforced Polymer) provided rather little enhancement to their load-carrying capacity. In this paper, shape modification technique was performed to modify the shape (cross section) of the columns from square columns into circular columns. Shape modification technique is also called circularization technique because the cross section is modified from square into circular cross section. Then, the circularized columns were wrapped with CFRP wraps. Shape modification is the strengthening method adopted in this paper as a mean to strengthen existing square columns. Columns studied in this paper are short columns with square sections as a special case of rectangular columns. Columns in this study are plain concrete columns (having concrete strength of = 24.41 MPa) with no internal steel reinforcement. The aim of this research is to study experimentally the behavior of circularized concrete square columns confined with CFRP wraps. Then, for better understanding, the results were compared with another, more widely used, strengthening technique which is the direct wrapping of square columns with CFRP wraps. Thus, investigating experimentally the effectiveness of the two aforementioned strengthening techniques in increasing the load-carrying capacity and ductility of the existing concrete columns. The methodology of this research is that six plain concrete short square columns were casted. These six columns were exerted to compressive pressure using concrete testing machine. These six columns were divided into three groups, each group consisted of 2 columns. The three groups were classified as follows: first group (titled L0) consisted of two square columns which were not strengthened by any method, second group (titled L1) consisted of two square columns confined by one layer of CFRP wraps, finally, the third group (titled LC1) consisted of two circularized square columns confined by one layer of CFRP wraps.Experimental results showed that load bearing capacity and ductility of square columns have been significantly enhanced. Test results showed that shape modification technique (columns LC1) produced enhancement in load carrying capacity about 167.8 % of the original non-strengthened columns (columns L0). Furthermore, square columns wrapped by one layer of CFRP wraps (columns L1) produced enhancement in load carrying capacity about 56.1% of the original non-strengthened columns (columns L0). As such, it was evident that circularization technique resulted in enhancement in load carrying capacity far more than the enhancement obtained from wrapping the square columns with CFRP wraps.
This review covers recent progress in the synthesis of curcumin and the bioactivity of semisynthetic and synthetic analogs of curcumin. The review also shows how curcumin is a useful intermediate for the synthesis of more complex organic molecules; historical perspective; the process of preparing the metal complexes and characterization the produced complexes using various spectral and other techniques; shows the importance of curcumin and its derivatives for their potential applications in medical devices and broad-spectrum of medical application such as antibiotic ointment, alternative therapeutics, antifungal, and antibacterial activities
GFRP was employed in constructions as an alternative to steel, which has many advantages like lightweight, large tensile strength and resist corrosion. Existing researches are insufficient in studying the influence of hybrid reinforced concrete composite columns encased by GFRP I-section (RCCCEG) and I-section steel (RCCCES). In this study twenty one (RC) specimens of a cross-section of 130 mm × 160 mm, with different length (long 1600 mm and short 750 mm) were encased by using I-section (steel and GFRP) and tested under various loading (concentric, eccentric and flexural loads). The test was focused on the influence of many parameters; load-carrying capacity, mode of failure, deformation and drawing an interaction diagram (N-
... Show MoreSelf-compacted concrete (SCC) considered as a revolution progress in concrete technology due to its ability for flowing through forms, fusion with reinforcement, compact itself by its weight without using vibrators and economic advantages. This research aims to assess the fresh properties of SCC and study their effect on its compressive strength using different grading zones and different fineness modulus (F.M) of fine aggregate. The fineness modulus used in this study was (2.73, 2.82,2.9& 3.12) for different zones of grading (zone I, zone II& marginal zone(between zone I&II)) according to Iraqi standards (I.Q.S No.45/1984).Twelve mixes were prepared, each mix were tested in fresh state with slump, V-Funnel and L-Box tests, t
... Show MoreSelf-compacted concrete (SCC) considered as a revolution progress in concrete technology due to its ability for flowing through forms, fusion with reinforcement, compact itself by its weight without using vibrators and economic advantages. This research aims to assess the fresh properties of SCC and study their effect on its compressive strength using different grading zones and different fineness modulus (F.M) of fine aggregate. The fineness modulus used in this study was (2.73, 2.82,2.9& 3.12) for different zones of grading (zone I, zone II& marginal zone(between zone I&II)) according to Iraqi standards (I.Q.S No.45/1984).Twelve mixes were prepared, each mix were tested in fresh state with slump, V-Funnel and L-Box tests, then 72
... Show MoreIn this work, a numerical study is performed to predict the solution of two – dimensional, steady and laminar mixed convection flow over a square cylinder placed symmetrically in a vertical parallel plate. A finite difference method is employed to solve the governing differential equations, continuity, momentum, and energy equation balances. The solution is obtained for stream function, vorticity and temperature as dependent variables by iterative technique known as successive over relaxation. The flow and temperature patterns are obtained for Reynolds number and Grashof number at (Re= -50,50,100,-100) (positive or negative value refers to aidding or opposing buoyancy , +1 assisting flow, -1 opposing flow) and (102 to 105) , respective
... Show MoreThe study explores the use of ergative verbs in constructing clauses and their impact on the backgrounding of the agent's role in two selected short stories. Contrary to hypothesis No. 1, the research indicates that changes in sentence patterns don't affect the meaning of the process. Additionally, hypothesis No. 2 is refuted as the middle structure is found to highlight the agent's role in the science fiction short story, Terra Infirmum, rather than concealing it as hypothesized for "The Invisible Man." The analysis uncovers that writers utilize ergative processes to narrate stories in various ways, including transitive/active voice, intransitive/active voice, and transitive/passive voice. Furthermore, the findings suggest that writers emp
... Show MoreThe impact of a simple trailing-edge plain flap on the aerodynamics of the SD7037 airfoil have been studied in this paper using computational fluid dynamics at Reynolds number of 3×105 across various low angles of attack and flap deflection angles. The computational model was evaluated by using Star CCM+ software with κ--ω SST turbulence and gamma transition model to solve Navier-Stokes equations. The accuracy of the computational model has been confirmed through comparison with experimental data, showing a high level of agreement at low angles of attack. The findings revealed that specific combinations of angles of attack and flap deflection angles could increase the lift-to-drag ratio by over 70% compared to baseline conditions, benefi
... Show MoreDuring the two last decades ago, audio compression becomes the topic of many types of research due to the importance of this field which reflecting on the storage capacity and the transmission requirement. The rapid development of the computer industry increases the demand for audio data with high quality and accordingly, there is great importance for the development of audio compression technologies, lossy and lossless are the two categories of compression. This paper aims to review the techniques of the lossy audio compression methods, summarize the importance and the uses of each method.