Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world’s rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals.
Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world’s rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals.
An optoelectronic flow-through detector for active ingredients determination in pharmaceutical formulations is explained. Two consecutive compact photodetector’s devices operating according to light-emitting diodes-solar cells concept where the LEDs acting as a light source and solar cells for measuring the attenuated light of the incident light at 180˚ have been developed. The turbidimetric detector, fabricated of ten light-emitting diodes and five solar cells only, integrated with a glass flow cell has been easily adapted in flow injection analysis manifold system. For active ingredients determination, the developed detector was successfully utilized for the development and validation of an analytical method for warfarin determination
... Show MoreThe main aim of this paper are the design and implementation of a pharmaceutical inventory database management system. The system was implemented by creating a database containing information about the stored medicines in the inventory, customers making transactions with the pharmaceutical trading company (which owns the inventory), medical suppliers, employees, payments, etc. The database was connected to the main application using C sharp. The proposed system should help in manag inginventory operations which include adding/updating employees’ information, preparing sale and purchase invoices, generating reports, adding/updating customers and suppliers, tracking customer payments and checking expired medicines in order to be disposed
... Show MoreSimple and sensitive spectrophotometric method is described based on the coupling reaction of tetracycline hydrochloride(TC. HCl) with diazotized 4-aminopyridine in bulk and pharmaceutical forms. Colored azo dye formed during this reaction is measured at 433 nm as a function of time. Factors affecting the reaction yield were studied and the conditions were optimized. The kinetic study involves initial rate and fixed time (10 minutes) procedures for constructing the calibration graphs to determine the concentration of (TC. HCl). The graphs were linear for both methods in concentration range of 10.0 to 100.0 µg.mL-1. The recommended procedure was applied successfully in the determination of (TC. HCl) in itscommercial formulations.
... Show MoreSimple and sensitive spectrophotometric method is described based on the coupling reaction of tetracycline hydrochloride (TC. HCl) with diazotized 4-aminopyridine in bulk and pharmaceutical forms. Colored azo dye formed during this reaction is measured at 433 nm as a function of time. Factors affecting the reaction yield were studied and the conditions were optimized. The kinetic study involves initial rate and fixed time (10 minutes) procedures for constructing the calibration graphs to determine the concentration of (TC. HCl). The graphs were linear for both methods in concentration range of 10.0 to 100.0 μg.mL-1. The recommended procedure was applied successfully in the determination of (TC. HCl) in its commercial formulations.
We propose two simple, rapid, and convenient spectrophotometric methods which are described for the determination of cephalexin in bulk and its pharmaceutical preparations. They are based on the measurement of the flame atomic emission of potassium ion (in the first method) and colorimetric determination of the green colored solution at 610 nm formed after the reaction of cephalexin with potassium permanganate as an oxidant agent (in the second method) in basic medium. The working conditions of the methods are investigated and optimized. Beer's law plot shows a good correlation in the concentration range of 5-40?g ml-1. The detection limits are 2.573,2.814 ?g ml-1 for the flame emission photometric method and 1.844,2.016 ?g ml-1 for colo
... Show MoreApplications of microalgae in environmental studies have recently increased. Current uses of immobilized microalga Chlorella vulgaris include reducing pharmaceutical substances such as amoxicillin AMX and potassium dichromate K2Cr2O7 on freshwater clam Pseudodontopsis euphraticus as a biotic model. Recent research pointed out a change in biomarkers of oxidative stress in an evaluation of induced toxicity. Where clams were exposed to different concentrations100, 200, and 400 mg/L for 7 days and 20, 30, and 50 mg/L for 5 days of amoxicillin and potassium dichromate, respectively. The results showed that exposure to AMX and K2Cr2O7 led to a signific
... Show MoreIn this work, a simple and very sensitive cloud point extraction (CPE) process was developed for the determination of trace amount of metoclopramide hydrochloride (MTH) in pharmaceutical dosage forms. The method is based on the extraction of the azo-dye results from the coupling reaction of diazotized MTH with p-coumaric acid (p-CA) using nonionic surfactant (Triton X114). The extracted azo-dye in the surfactant rich phase was dissolved in ethanol and detected spectrophotometrically at λmax 480 nm. The reaction was studied using both batch and CPE methods (with and without extraction) and a simple comparison between the two methods was performed. The conditions that may be affected by the extraction process and the sensitivity of m
... Show MoreChromatographic and spectrophotometric methods for the estimation of mebendazole in
pharmaceutical products were developed. The flow injection method was based on the oxidation of
mebendazole by a known excess of sodium hypochlorite at pH=9.5. The excess sodium hypochlorite is then
reacted with chloranilic acid (CAA) to bleach out its color. The absorbance of the excess CAA was recorded
at 530 nm. The method is fast, simple, selective, and sensitive. The chromatographic method was carried out
on a Varian C18 column. The mobile phase was a mixture of acetonitrile (ACN), methanol (MeOH), water
and triethylamine (TEA), (56% ACN, 20% MeOH, 23.5% H2O, 0.5% TEA, v/v), adjusted to pH = 3.0 with
1.0 M hy