Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world’s rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals.
Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world’s rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals.
A simple, fast and sensitive spectrophotometric method has been applied for the determination of tetracycline hydrochloride in its pure form and in pharmaceutical preparations. The method based on coupling reaction of the antibiotic with diazotized anthranilic acid to form a stable yellow azo dye which shows a maximum absorption at 419 nm. Uni- and multivariate approaches were followed in optimizing the experimental conditions. Under optimum experimental conditions obtained via multivariate (Central Composite Design), the linearity of the constructed calibration curve was in the range of 0.560 μg.mL-1 with molar absorptivity of 14619 L.mol-1.cm-1 and the value of detection limit was 0.2813μg.mL-1. The capability of the metho
... Show MoreDevelopment of a precise and delicate reaction has been acquired for the determination of vancomycin hydrochloride using batch and cloud point extraction (CPE) methods. The first method is based on the formation of azo dye as a result of diazotized dapsone coupled with vancomycin HCl (VAN) in a basic medium. The sensitivity of this reaction was enhanced by utilizing a nonionic surfactant (Triton X-114) and the cloud point extraction technique (second method). The azo dye formed was extracted into the surfactant-rich phase, dissolved in ethanol and detected at λmax 440 nm spectrophotometrically. The reaction was investigated using both batch and CPE methods (with and without extraction), and a simple comparison between the two
... Show MoreThe synthesis of the MBIB ligand by the reaction of the BIB ligand with methionine in 1:1 ratio, and the metal complexes with Ni(II), Cu(II), and Pt(IV) were described. All synthesized compounds were characterized using spectroscopic methods such as FT-IR, 1H NMR, UV-VIS, thermal analysis (TG and DSC), atomic absorption (AAS), elemental microanalysis (C.H.N.S), melting point (m.p.), magnetic susceptibility, molar conductivity measurements, and chloride content. All the complexes were electrolytes, and the suggested geometric shapes for the complexes were octahedral. The magnetic properties of the platinum complex were diamagnetic, while those of the nickel and copper complexes were paramagnetic. All synthes
... Show MoreSimple and rapid spectrophotometric determination of furosemide (FUR) has been investigated .The method is based on acid hydrolysis of FUR to free primary aromatic amine and diazotization followed by coupling with 3, 5 di methyl phenol (3, 5-DMPH) at basic medium. The absorbance was measured at 434 nm, the method was optimized for best condition, and beers’ law is obeyed over the range of 0.4-50 µg.mL-1 with molar absorptivity and sandal’s sensitivity 1.3899 x104 L moL-1 .cm-1 and 0.0238x104 µg.cm-2 respectively. Analysis of solution containing nineteen different concentrations of FUR gave a correlation coefficient of (0.9999) a
... Show MoreThere is currently a significantly larger concentration of toxins in our environment than there was in the past. This is mostly attributable to the expansion of modern industry. This investigation was conducted in order to investigate various haematological and biochemical changes in order to determine the effects of Cd on the liver and kidney. Because of its long biological half-life, it is considered hazardous to human health. The effect of sub-lethal doses (40, 80 and 120 mg\Kg) of Cadmium (Cd) on male mice were evaluated for 4 weeks, and analysis was done to estimate their biochemical parameters and antioxidant enzymes. The results showed that Cd-treated mice had considerably lower packed cell volume, red blood cells, and haemoglobin. W
... Show MoreChemical pollution is a very important issue that people suffer from and it often affects the nature of health of society and the future of the health of future generations. Consequently, it must be considered in order to discover suitable models and find descriptions to predict the performance of it in the forthcoming years. Chemical pollution data in Iraq take a great scope and manifold sources and kinds, which brands it as Big Data that need to be studied using novel statistical methods. The research object on using Proposed Nonparametric Procedure NP Method to develop an (OCMT) test procedure to estimate parameters of linear regression model with large size of data (Big Data) which comprises many indicators associated with chemi
... Show MoreArtificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing flower pollination algorithm in the environmental field to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement. We estimate the regression function of the semi-parametric model by estimating the parametric model and estimating the non-parametric model, the parametric model is estimated by using an instrumental variables method (Wald method, Bartlett’s method, and Durbin
... Show MoreThis work highlights the estimation of the Al-Khoser River water case that disposes of its waste directly into the Tigris River within Mosul city. Furthermore, the work studies the effects of environmental and climate change and the impact of pollution resulting from waste thrown into the Al-Khoser River over the years. Al-Khoser River is located in the Northern Mesopotamia of Mosul city. This study aims to detect the polluted water area and the polluted surrounding area. Temporal remote sensing data of different Landsat generations were considered in this work, specifically Enhanced Thematic Mapper Plus of 2000 and Operational Land Imager of 2015. The study aims to measure the amount of pollution in the study area over 15 years
... Show MoreWater pollution has created a critical threat to the environment. A lot of research has been done recently to use surface-enhanced Raman spectroscopy (SERS) to detect multiple pollutants in water. This study aims to use Ag colloid nanoflowers as liquid SERS enhancer. Tri sodium phosphate (Na3PO4) was investigated as a pollutant using liquid SERS based on colloidal Ag nanoflowers. The chemical method was used to synthesize nanoflowers from silver ions. Atomic Force Microscope (AFM), Scanning Electron Microscope (SEM), and X-ray diffractometer (XRD) were employed to characterize the silver nanoflowers. This nanoflowers SERS action in detecting Na3PO4 was reported and analyzed
... Show MoreThe aim of this study is to determine the level of pollution with heavy metals (Cd, Cr, Cu, Ni, Pb, Zn) and their potential sources in dust samples collected from schools in Ramadi City, Iraq. The dust samples were collected from 40 primary schools and two kindergartens and analyzed by using atomic absorption spectrophotometer. The heavy metal concentrations were found to follow the order Cr > Cu > Pb > Ni > Zn > Cd. The results indicated that the concentrations of Cd, Cu, and Pb exceeded the permitted background values. The pollution level was assessed using the geo-accumulation index (Igeo) and pollution load index (PLI). The classification of dust samples according to Igeo values showed that
... Show More