Background:Fractures of patella constitute 1% of all fractures. Various techniques have been described for internal fixation of patella fractures. Superiority of one technique over the other has long been debated. Objective:We reviewed a series of seventy patients with transverse or comminuted fractures of patella treated with cerclage and tension band wiring technique to assess if it had any advantages over k. wires and tension band wiring technique. Type of the study:Retrospective study.Methods; Seventy patients with displaced patella fracture, with a mean age of 47 years (range 13-75) were divided into two groups :group A 36 patients were treated with cerclageand tension bands technique ,and group B 34 patients were fixed by 2 K. wires and tension bands technique. Clinical outcome was assessed using the system of Bostman score. Range of motion and evidence of radiological union were assessed at regular follow-ups. Results; All patients in group A gained Excellent result and good result, while only one patient gained poor result in group B . One patient (2.8%) developed superficial infection in group A and three patients( 8.8% ) developed superficial infection in group B. All fractures had united at the end of 10 weeks. Twenty two patients (31.4%) underwent a second surgery for wire removal; 5 cases in group A ( 13.9 % ) two of them due to implant related complications and 15 ( 44.1%) patients for group B mainly due to pain and interference with daily activity. Malunion or non-union was not noted in any of the cases. . Conclusion; The advantages of the cerclage and tension bands technique for fixation of displaced patella fracture are early mobilization, elimination of k-wire related complications, and ease of use in comminuted fracture pattern as well and a lower reoperation rates as compared to other method of fixation by 2 K. wires and tension bands technique. We strongly recommend its use in cases of displaced comminuted transverse fractures of patella
This study presents a practical method for solving fractional order delay variational problems. The fractional derivative is given in the Caputo sense. The suggested approach is based on the Laplace transform and the shifted Legendre polynomials by approximating the candidate function by the shifted Legendre series with unknown coefficients yet to be determined. The proposed method converts the fractional order delay variational problem into a set of (n + 1) algebraic equations, where the solution to the resultant equation provides us the unknown coefficients of the terminated series that have been utilized to approximate the solution to the considered variational problem. Illustrative examples are given to show that the recommended appro
... Show MoreAn atomic force microscope (AFM) technique is utilized to investigate the polystyrene (PS) impact upon the morphological properties of the outer as well as inner surface of poly vinyl chloride (PVC) porous fibers. Noticeable a new shape of the nodules at the outer and inner surfaces, namely "Crater nodules", has been observed. The fibers surface images have seen to be regular nodular texture at the skin of the inner and outer surfaces at low PS content. At PS content of 6 wt.%, the nodules structure was varied from Crater shape to stripe. While with increasing of PS content, the pore density reduces as a result of increasing the size of the pore at the fiber surface. Moreover, the test of 3D-AFM images shows that the roughness of both su
... Show MoreThe aim of this research is to study the optical properties of carbon-magnesium plasma resulting from arc discharge with explosive wire technique, where the energy gap of each of carbon and magnesium and the carbon-magnesium bond for three values of the wire exploding current (50,75,100 amperes) was studied. It was found that the energy gap for each of carbon and magnesium decreases with increasing the current, the X-ray diffraction of magnesium and the carbon-magnesium suspension was studied, and FTIR of the carbon-magnesium suspended carbon was studied for three values of the exploding current (50, 75, 100 amperes) and the type of bonds for carbon and magnesium was determined. To ob
In this paper, we present new algorithm for the solution of the nonlinear high order multi-point boundary value problem with suitable multi boundary conditions. The algorithm is based on the semi-analytic technique and the solutions are calculated in the form of a rapid convergent series. It is observed that the method gives more realistic series solution that converges very rapidly in physical problems. Illustrative examples are provided to demonstrate the efficiency and simplicity of the proposed method in solving this type of multi- point boundary value problems.
Polycrystalline Indium oxide (In2O3) and Indium oxide-zinc oxide (IZO) thin films mixed with 10% ZnO content were prepared by spray-pyrolysis technique at relatively low substrate temperature (150 ˚C).Field emission scanning electron microscope (FE-SEM) shows that the nanostructure at 10% ZnO content has pyramid like structure. The hall effect measurements show that the prepared samples have n-type charge carriers .The films were examined as gas sensor against H2S gas at different operating temperatures (200, 250 and 300) oC, and it was found that the IZO sample a good sensitivity to H2S gas ~ 572 % at operating temperature 200 oC, with relatively fast response time of 19 s and recovery time of 17
... Show MoreIn this paper, we present new algorithm for the solution of the second order nonlinear three-point boundary value problem with suitable multi boundary conditions. The algorithm is based on the semi-analytic technique and the solutions which are calculated in the form of a rapid convergent series. It is observed that the method gives more realistic series solution that converges very rapidly in physical problems. Illustrative examples are provided to demonstrate the efficiency and simplicity of the proposed method in solving this type of three point boundary value problems.
Spray pyrolysis technique (SPT) is employed to synthesize cadmium oxide nanostructure with 3% and 5% Cobalt concentrations. Films are deposited on a glass substrate at 350 ᵒC with 150 nm thickness. The XRD analysis revealed a polycrystalline nature with cubic structure and (111) preferred orientation. Structural parameters represent lattice spacing, crystallite size, lattice parameter and dislocation density. Homogeneous surfaces and regular distribution of atoms were showed by atomic force microscope (AFM) with 1.03 nm average roughness and 1.22 nm root mean square roughness. Optical properties illustrated a high transmittance more than 85% in the range of visible spectrum and decreased with Co concentration increasing. The absorption
... Show MoreBackground: The bonded orthodontic retainer constructed from multistrand wire and composite is an efficient esthetic retainer, which can be maintained long-term. Clinical failures of bonded orthodontic retainers, most commonly at the wire/composite interface, have been reported. This in vitro investigation aimed to evaluate the tensile forces of selected multistrand wires and composite materials that are available for use in the construction of bonded fixed retainers. Materials and Methods: The study sample includes 120 wires with three types of retainer wires (3 braided strands\ Orthotechnology, 8 braided strands\ G&H Orthodontics, 6 coaxial strands\ Orthoclassic wires), two types of adhesive (flowable\ Orthotechnology, non flowable\ G&H O
... Show More